
Pseudo-Random Access Compressed
Archive for Security Log Data

Submitted in partial fulfilment
of the requirements of the degree of

Master of Science

of Rhodes University

Johannes Jurgens Radley

Grahamstown, South Africa
September 2015

Abstract

We are surrounded by an increasing number of devices and applications that produce a
huge quantity of machine generated data. Almost all the machine data contains some
element of security information that can be used to discover, monitor and investigate
security events.

The work proposes a pseudo-random access compressed storage method for log data to be
used with an information retrieval system that in turn provides the ability to search and
correlate log data and the corresponding events. We explain the method for converting
log files into distinct events and storing the events in a compressed file. This yields an
entry identifier for each log entry that provides a pointer that can be used by indexing
methods.

The research also evaluates the compression performance penalties encountered by using
this storage system, including decreased compression ratio, as well as increased compres-
sion and decompression times.

Acknowledgements

I would like to express my deepest gratitude to my supervisors Dr. Karen Bradshaw and
Prof. Barry Irwin for their guidance, infinite patience and support.

I would like to thank my wife Debbie and two sons, Chris and Abrie, for their support,
understanding and love during the writing of this work.

Contents

List of Figures viii

List of Tables x

Listings xii

1 Introduction 1

1.1 Background Information . 1

1.2 Problem Statement . 2

1.3 Research Objectives . 2

1.4 Delineation and Limitations . 2

1.4.1 Log Sources and Compression Ratios 3

1.4.2 Compression Methods . 3

1.5 Document Structure . 3

2 Literature Review 4

2.1 Inverted Index . 4

2.2 Random Access in Compressed Files . 6

2.3 Compression . 7

i

CONTENTS ii

2.3.1 Huffman Coding . 7

2.3.2 LZ77 . 8

2.3.3 Burrows-Wheeler Transformation 10

2.4 Compressed Full-Text Indexes . 11

2.5 Summary . 11

3 Process Flow and Pseudo-Random Access Compressed Archive 13

3.1 Timestamp Extraction . 13

3.1.1 Timestamp Prefix . 14

3.1.2 Timestamp Parsing . 14

3.1.3 Missing Century . 15

3.1.4 Missing Year . 16

3.1.5 Missing Timezone . 17

3.2 Event Breaking . 17

3.2.1 Event Structure . 18

3.2.2 Generic Fields . 18

3.2.3 Line Breaking . 19

3.2.4 Merging Lines . 20

3.2.5 Metadata . 20

3.2.6 Event Breaking Process Flow . 21

3.3 Event Archiver . 22

3.3.1 Variable Width Integers . 23

3.3.2 Fixed Width Integers . 25

CONTENTS iii

3.3.3 Strings . 26

3.4 Archive Header . 26

3.5 Event Data Blocks . 28

3.5.1 Event Data Block Header . 28

3.5.2 Serialised Event Data . 29

3.5.3 Event Identifier . 31

3.5.4 Event Data Block Offset Record . 33

3.6 Block Offset List . 33

3.7 Metadata . 34

3.8 Tailing Record . 34

3.9 Summary . 35

4 Evaluation of Compression Methods 36

4.1 Experimental Design and Execution . 36

4.2 Compression Tools . 36

4.3 Limitations . 37

4.3.1 Data Bias . 37

4.3.2 Disk Access Caching . 38

4.3.3 Tool Implementation . 39

4.4 Implementation . 39

4.4.1 Sample Log Files . 40

4.4.2 Shannon Entropy . 41

4.4.3 Executing Command Line Tools . 41

CONTENTS iv

4.4.4 Compression Ratios . 42

4.4.5 Mean . 42

4.4.6 Weighting . 43

4.4.7 Standard Deviation Calculation . 43

4.5 Evaluation of Results . 43

4.5.1 Shannon Entropy Results . 43

4.5.2 Standard Deviation for Compression Times 44

4.5.3 Standard Deviation for Decompression Times 46

4.5.4 Compression Performance . 46

4.5.5 Compression Time . 48

4.5.6 Decompression Time . 48

4.6 Summary . 49

5 Implementation Performance Testing 51

5.1 Archive Implementation . 51

5.1.1 Archive Implementation Tool Chain 51

5.1.2 Block Array Class . 52

5.1.3 Block Array Caching . 53

5.1.4 Compression Method Abstraction 53

5.2 Experimental Design and Execution . 54

5.2.1 Log Samples . 54

5.2.2 Event Count Calculation . 55

5.2.3 Experiment Workflow . 56

CONTENTS v

5.2.4 SHA1 Validation of Events . 57

5.3 Validation of Archiving Process . 57

5.3.1 Event Count . 58

5.3.2 SHA1 Validation . 58

5.4 Evaluation of Results . 58

5.4.1 Weighted Compression Ratios . 59

5.4.2 Average Compression Ratios . 60

5.4.3 Compression Loss . 61

5.4.4 Weighted Archive Write Times . 62

5.4.5 Average Archive Write Times . 62

5.4.6 Weighted Block Retrieval Times . 63

5.4.7 Average Block Retrieval Times . 64

5.4.8 Random Access Read Times . 64

5.5 Summary . 66

6 Conclusion and Future Work 69

6.1 Contribution of this Work . 69

6.2 Future Work . 70

References 73

A Test Platform 74

CONTENTS vi

B Log File Samples 77

B.1 PF Firewalls: firewall . 77

B.2 Windows Security Event Logs: windows-event 78

B.3 BIND: dns . 79

B.4 Squid Proxy Logs: proxy . 80

B.5 Postfix Mail Logs: mail . 80

B.6 PCAP Files: pcap-text . 81

C Additional Information for the Compression Method Evaluation 82

D Random Access Retrieval Times 84

List of Figures

2.1 File structure of York’s compressed random access file. 7

2.2 Example Huffman binary tree . 8

2.3 LZ77 Encoding . 9

2.4 LZ77 Decoding . 9

3.1 Structure of an event . 18

3.2 Event breaking process flow . 21

3.3 Pseudo-random access compressed file format 22

3.4 Archive header fields . 27

3.5 Event data block structure . 28

3.6 Tailing record fields . 34

4.1 Total weighted compression ratios . 47

4.2 Total weighted compression times . 48

4.3 Total weighted decompression times . 49

5.1 Event block array structures . 53

5.2 Abstract compression method design . 54

5.3 Weighted compression ratio in archive . 59

vii

LIST OF FIGURES viii

5.4 Average compression ratios in archive . 60

5.5 Weighted times for archiving sample logs 62

5.6 Average times for archiving sample logs . 63

5.7 Weighted times for reading blocks from archives 64

5.8 Average block retrieval times . 65

5.9 Average retrieval time based on sorted entry identifiers 66

5.10 Average retrieval time based on randomly ordered entry identifiers 68

A.1 bonnie++ results . 76

List of Tables

2.1 Phrase flat file consisting of seven phrases and their offsets in bytes 5

2.2 Mapping between record number and offset of phrases 5

2.3 Inverted list for terms in phrases . 5

2.4 Huffman frequency example . 8

2.5 Burrows-Wheeler Transformation example 10

2.6 Inverse Burrows-Wheeler transformation example 11

3.1 Generic fields for events . 19

3.2 Example event with field values . 19

3.3 Examples of variable width integers values 25

3.4 Compression method options in the archive header 27

3.5 Example event with field serialisation . 30

3.6 Serialisation field name lookup example . 30

3.7 Field key-value lookup for both the PF firewall example as well as other
events . 31

3.8 Serialised PF log event . 32

4.1 Compression tools . 37

ix

LIST OF TABLES x

4.2 Test file sizes used in compression test . 38

4.3 List of applications that generated the sample log files 40

4.4 Shannon entropy values of sample and baseline files 44

4.5 Mean compression time and standard deviation 45

4.6 Standard deviation of compression time for all block sizes 45

4.7 Mean decompression time and standard deviation 46

4.8 Standard deviation of decompression time for all block sizes 47

5.1 C++ libraries used . 52

5.2 Truncated sample log file sizes . 56

5.3 Event count in sample files . 58

5.4 Mean compression ratios in archive per method per block size 61

5.5 Compression ratio loss . 61

5.6 Number of event data block reads from archive 67

C.1 Compression ratio weighted values . 82

C.2 Compression time weighted values . 83

C.3 Decompression time weighted values . 83

D.1 Average retrieval time based on sorted entry identifiers in seconds 84

D.2 Average retrieval time based on randomly ordered entry identifiers in seconds 84

Listings

3.1 Cisco IOS log entry starting with a timestamp 14

3.2 Cisco IOS log entry not starting with a timestamp 14

3.3 Cisco Secure ACS log entry . 17

3.4 Squid proxy log entry showing generic field values 19

3.5 Variable width integer encoding source . 23

3.6 Variable width integer decoding source . 24

3.7 PF log entry to show event serialisation . 29

4.1 Shannon baseline file generation . 41

4.2 Python implementation of Shannon entropy calculation 41

5.1 Untruncated PF firewall sample log . 55

5.2 Truncated PF firewall sample log . 55

5.3 Example of calculating event count in single-line event log files 56

5.4 Example of event counting in Windows event logs 56

A.1 bonnie++ command . 75

B.1 Extract from PF Firewall logs . 77

B.2 Extract from Windows Security Event logs 78

B.3 Extract from BIND logs . 79

xi

LISTINGS xii

B.4 Extract from Squid Proxy logs . 80

B.5 Extract from Postfix mail logs . 80

B.6 Extract from PCAP file . 81

Chapter 1

Introduction

1.1 Background Information

We are surrounded by an increasing number of devices and applications that produce a
huge quantity of machine generated data (Gantz and Reinsel, 2010, 2012; Donovan, 2012;
Press, 2014). This consists in the greater part of application and system logs and metric
information.

Almost all the machine data contains security data, from explicit security data like firewall
and access logs to discrete data like network usage and web access logs which can be used
for heuristic security analysis and forensic investigation.

It is impossible for a human to process the large volumes of machine generated data
that are constantly generated. To address this problem, a number of solutions have been
created to normalise the data and perform automated correlation and heuristic tests. The
foremost among these are Security Information and Event Management (SIEM) systems.

While SIEM systems address a security monitoring need, they require a huge upfront
normalisation of the log information and can be disrupted by even minor changes in the
format of a single log event.

This limitation has led to the use of information retrieval (IR) techniques being applied
to log data. A number of open-source solutions (ELSA1, Kibana2, Graylog23) and pro-

1https://code.google.com/p/enterprise-log-search-and-archive/
2http://www.elasticsearch.org/overview/kibana/
3http://graylog2.org/

1

1.2. PROBLEM STATEMENT 2

prietary products (Splunk4, ArcSight Logger5) have appeared to manage and process
machine data using IR methods.

1.2 Problem Statement

While there is a large body of literature devoted to IR and a number of products on
the market, there is very little research available on the application of IR methods and
techniques to machine generated data, especially log data.

The techniques and methods that store, index and search documents like web pages,
books and articles, may not be optimal for large volumes of log data that need to be
rapidly stored and indexed while being available for searching. Most IR systems work on
a batch processing and optimisation cycle using techniques designed for natural languages
to reduce the size of some structures. In most cases they do not put any emphasis on the
temporal nature of the information being indexed, which is a major attribute of security-
related machine generated data.

The large volumes of log data produced introduce their own challenges especially for
storage. The main challenge is to create a storage with good compression while retaining
the ability to have random access to the data.

1.3 Research Objectives

The aim of the research is to describe a read-only random access compressed archive that
can be used as a storage for heterogeneous text security log data. The entry identifier
produced for each entry can be used by an index as a pointer to the original data, making
it suitable for use with IR indexing systems. This work will concentrate on evaluating the
impact of compression methods and block sizes on the archiving system using selected
sample logs.

1.4 Delineation and Limitations

The research is affected by the following delineations and limitations.
4http://www.splunk.com/
5http://www8.hp.com/us/en/software-solutions/arcsight-logger-log-management/

1.5. DOCUMENT STRUCTURE 3

1.4.1 Log Sources and Compression Ratios

Compression ratios are subject to the raw data being compressed. A single log type is
usually very repetitive in nature and will have a much smaller dictionary resulting in
better compression.

Since only a limited number of log types are tested, the results may be different when
applied to log types outside of those used in the experiments. The log samples are also
heavily biased towards security type logs.

This study uses logs from a number of different sources including logs from: PFSense
firewall, Dovecot/Postfix mail systems, Squid proxy logs, PCAP logs, Apache web access
and Windows security events written to text files.

1.4.2 Compression Methods

For the purpose of this work only a small number of the possible compression methods and
compression command line tools are tested. The methods chosen however are sufficient
to perform the evaluation of the implementation discussed below.

1.5 Document Structure

The work consists of a number of chapters starting with the literature review and ending
with the conclusion. Chapter 2 provides the reader with background information on
methods and structures used in this work.

Chapter 3 explains the process of breaking log file entries into individual events and storing
those events in an archive. The chapter also defines the structures used in the archive.

Chapter 4 evaluates a number of compression methods, using different block sizes, for
selected security-related log samples. Chapter 5 tests the selected compression methods
using the archive system described in Chapter 3.

Chapter 6 contains the contributions of this work and a discussion of suggested future
research.

Chapter 2

Literature Review

This chapter discusses inverted files used by IR systems, compression methods, compressed
random access files, compressed full text indexing structures and other topics used in the
this work.

2.1 Inverted Index

Inverted index, sometimes called an inverted file, is one of the main data structures used
in almost all IR systems (Büttcher, Clarke, and Cormack, 2010, p. 33). In simple terms,
an inverted file provides a link between the individual terms in the text data and their
location within the storage mechanism used to hold the text data (Frakes and Baeza-Yates,
1992, p. 28) (Zobel and Moffat, 2006) (Büttcher et al., 2010, p. 33).

To explain the concept, a simple example is used. Table 2.1 represents seven phrases in a
flat file with the start offset of each phrase. This is the storage or archive of the original
text in the IR system.

Table 2.2 is a mapping created between a record number or entry identifier and the offset
of the phrases in the file. This mapping creates an abstraction layer between the index and
storage allowing for very large implementations and dynamic moving of the underlying
data.

Each phrase is then split into keywords or terms and added to the inverted index with its
record number and start position in the phrase. Table 2.3 shows the sorted final result
after processing of all the phrases.

4

5

Table 2.1: Phrase flat file consisting of seven phrases and their offsets in bytes

Offset in File Phrase

0 aaa eee iii ggg bbb fff hhh ccc bbb
35 ggg ggg aaa hhh iii ccc aaa aaa
66 aaa iii ddd ggg fff jjj
89 iii hhh ggg iii ddd
108 bbb ggg aaa ddd ccc bbb iii
135 ggg iii jjj ggg eee
154 bbb eee hhh hhh ddd ccc

Table 2.2: Mapping between record number and offset of phrases

Record Number Offset

1 0
2 35
3 66
4 89
5 108
6 135
7 154

Table 2.3: Inverted list for terms in phrases

Term Term Count Inverted List

aaa 6 (1:0),(2:8),(2:24),(2:28),(3:0),(5:8)
bbb 5 (1:16),(1:32),(5:0),(5:20),(7:0)
ccc 4 (1:28),(2:20),(5:16),(7:20)
ddd 4 (3:8),(4:16),(5:12),(7:16)
eee 3 (1:4),(6:16),(7:4)
fff 2 (1:20),(3:16)
ggg 8 (1:12),(2:0),(2:4),(3:12),(4:8),(5:4),(6:0),(6:12)
hhh 5 (1:24),(2:12),(4:4),(7:8),(7:12)
iii 7 (1:8),(2:16),(3:4),(4:0),(4:12),(5:24),(6:4)
jjj 2 (3:20),(6:8)

2.2. RANDOM ACCESS IN COMPRESSED FILES 6

The inverted index now provides an efficient method to search for terms and combination
of terms in the original phrases. For example, if the user searches for eee the inverted
index will return phrases 1, 6 and 7.

It is further possible to do Boolean searches (Moffat and Zobel, 1996, p. 369–370) like
AND, OR and NOT. Consider the search “eee AND fff”. The inverted index retrieves
1, 6, and 7 of eee and 1 and 3 for fff giving a final list of 1, 3, 6 and 7. For the search
“eee NOT fff”, the inverted index again returns 1, 6, and 7 for eee and 1 and 3 for fff.
Since both contain 1 this will be eliminated from the entry identifier list of eee yielding
a final result of 6 and 7.

Although there are many structures and methods that can be used to represent the sorted
array of terms, they all use some way of pointing to the original data, the entry identifier,
document identifier or record number.

2.2 Random Access in Compressed Files

Compression is essential when working with large volumes of data. Unfortunately, com-
pressed data files do not usually support random access to the contained data. In most
cases to find data at offset n it is necessary to start at offset 0 and uncompress all data
to offset n–1 before uncompressing and reading the data requested.

York (2001) suggests the use of blocks with an accompanying index that maps the block
offset in the file. This method, however, is not suitable for doing random access updates
as the new data may not compress to the exact same size as the old data block. The
solution though is well suited to cases where the data is only written once to the file.

The idea proposed by York (2001) is not unique as a similar concept was already employed
in dictzip (Faith, 1997) which uses the extra field extension in the gzip (Deutsch, 1996)
specification (see Section 2.3.1.1 of the specification).

Figure 2.1 depicts the file structure proposed by York (2001) consisting of a file header and
a variable number of sections. The sections contain clusters of data written as individual
blocks to the file. This file structure is very complicated as it makes provision for random
write access. The file format would be simpler if the data were only written once to the
file allowing only for random read access after that. This limitation is part of the design
as specified in the research objectives given above (Section 1.3).

2.3. COMPRESSION 7

File

File Header

Section 0

Section 1

Section n

Block Allocation
Table

Cluster Mapping
Table

Cluster Data

Figure 2.1: File structure of York’s compressed random access file.

2.3 Compression

Compression aims to reduce the storage space required to store data by applying an
encoding scheme of some kind. This work is only concerned with the group of algorithms
that perform lossless data compression. Lossless means that the data after decompression
is exactly the same as the original data before compression.

2.3.1 Huffman Coding

Huffman (1952) describes a method for constructing a binary tree based on the frequency
of the occurrence of a symbol in a given corpus. The resulting binary tree yields shorter
code lengths for more frequent symbols and longer code lengths for less frequent symbols.
This results in a shorter encoding of the original corpus.

As an example, Table 2.4 shows six symbols each with their frequency of occurrence in the
example corpus. The resulting Huffman binary tree is depicted in Figure 2.2. The code is
then created by following the path from the top entry or root down to the symbol, with
each left branch resulting in a 0 and right branch in a 1. Table 2.4 clearly demonstrates
that the higher the symbol frequency the shorter the code for the symbol.

2.3. COMPRESSION 8

Table 2.4: Huffman frequency example

Symbol Frequency Code

A 30 0
B 18 101
C 14 100
D 9 110
E 6 1111
F 4 1110

4:F 6:E

10:*9:D

19:*

14:C 18:B

32:*

51:*30:A

81:*

00

0

0

0

1

1

11

1

Figure 2.2: Example Huffman binary tree

Although this method dates back to 1952, both it and its variants are still used to com-
plement other compression methods as described below.

2.3.2 LZ77

While Huffman (1952) was concerned with compression of single symbols, Ziv and Lempel
(1977) (LZ77) described a compression based on sequences of multiple symbols.

In their work, Ziv and Lempel (1977) introduced a sliding window compression algorithm
consisting of a search buffer and a lookahead buffer. The search buffer acts as a dictionary
and is used for searching duplicate occurrences of a sequence of symbols in the lookahead
buffer, replacing such matches with a pointer to the previous occurrence.

Figure 2.3 details the process of LZ77 encoding using the string SATATASACITASAX. The
algorithm attempts to match the longest sequence of symbols in the lookahead buffer to
the first occurrence of the sequence in the search buffer, outputting a tuple consisting

2.3. COMPRESSION 9

of the start offset within the search buffer, the length of the match and the next non
matching symbol in the lookahead buffer. In cases where no match is found, an offset and
length of zero is written to the output. After each step, the offset of the sliding window
is advanced by the length of the match plus one.

The output is usually encoded to reduce the storage space required. For example in gzip,
Huffman encoding is used to compress the output tuples.

Output LZ77
Step 8 7 6 5 4 3 2 1
1 S A T A T A S ACITASAX 0, 0, S

2 S A T A T A S A CITASAX 0, 0, A

3 S A T A T A S A C ITASAX 0, 0, T

4 S A T A T A S A C I TASAX 2, 2, A

5 S A T A T A S A C I T A S AX 6, 2, C

6 S A T A T A S A C I T A S A X 0, 0, I

7 SA T A T A S A C I T A S A X 6, 4, X

 - Next charater

 - Longest match in lookahead buffer

 - Longest match in search buffer

Look-ahead BufferSearch Buffer

Figure 2.3: LZ77 Encoding

Figure 2.4 illustrates the decoding process using the outputs from Figure 2.3 as its inputs.
The decoding appends any matches defined in the input, as well as the next character
symbol for that entry.

Input 8 7 6 5 4 3 2 1

0, 0, S S

0, 0, A S A

0, 0, T S A T

2, 2, A S A T A T A

6, 2, C S A T A T A S A C

0, 0, I SA T A T A S A C I

6, 4, X SATATAS A C I T A S A X

 - Restored from dictionary lookup

 - Restored from next character field

Figure 2.4: LZ77 Decoding

2.3. COMPRESSION 10

GZIP, LZ4, LZO and LZMA are all variants of LZ77 with varying optimisation including
the output formatting and sliding window size. The individual optimisations and their
associated costs and benefits are beyond the scope of this work.

2.3.3 Burrows-Wheeler Transformation

Burrows and Wheeler (1994) introduced a reversible transformation algorithm that re-
orders text so that it is easy to compress with other algorithms (Fenwick, 1996). This
transformation algorithm forms the basis of the bzip2 compression method.

The algorithm is best explained with the use of an example. Taking the string abracadabra,
an end-of-line marker ($) is added at the end resulting in the string abracadabra$. Then,
each rotation of the string is sorted and the transformation output is created from the
last character of each rotation resulting in ard$rcaaaabb. This process is illustrated in
Table 2.5. Even this short sample string produces clumps of letters like the run of four
a’s and two b’s at the end of the transformation output.

Table 2.5: Burrows-Wheeler Transformation example

Rotated List Sorted List Last Column

abracadabra$ $abracadabra a
bracadabra$a a$abracadabr r
racadabra$ab abra$abracad d
acadabra$abr abracadabra$ $
cadabra$abra acadabra$abr r
adabra$abrac adabra$abrac c
dabra$abraca bra$abracada a
abra$abracad bracadabra$a a
bra$abracada cadabra$abra a
ra$abracadab dabra$abraca a
a$abracadabr ra$abracadab b
$abracadabra racadabra$ab b

To reverse the transformation, a table is created with the output from the last column of
the transformation step. In each iteration the table is sorted and the output column is
prepended again. This continues until the process has been repeated for the number of
characters in the string. The original string is the string that ends with the end-of-string
marker. Table 2.6 illustrates the process.

2.4. COMPRESSED FULL-TEXT INDEXES 11

Table 2.6: Inverse Burrows-Wheeler transformation example

Start Step 1 Step 2 Step 3 Step 10 Step 11 Step 12

a a$ a$a a$ab a$abracadab a$abracadabr $abracadabra
r ra ra$ ra$a ra$abracada ra$abracadab a$abracadabr
d da dab dabr dabra$abrac dabra$abraca abra$abracad
$ $a $ab $abr $abracadabr $abracadabra abracadabra$
r ra rac raca racadabra$a racadabra$ab acadabra$abr
c ca cad cada cadabra$abr cadabra$abra adabra$abrac
a ab abr abra abra$abraca abra$abracad bra$abracada
a ab abr abra abracadabra abracadabra$ bracadabra$a
a ac aca acad acadabra$ab acadabra$abr cadabra$abra
a ad ada adab adabra$abra adabra$abrac dabra$abraca
b br bra bra$ bra$abracad bra$abracada ra$abracadab
b br bra brac bracadabra$ bracadabra$a racadabra$ab

2.4 Compressed Full-Text Indexes

Compressed Full-Text Indexes (Navarro and Makinen, 2007) or Self-Indexing Inverted
Files (Moffat and Zobel, 1996) are indices constructed in such a way that the original
document can be reconstructed from the index file itself, thereby eliminating the need to
retain the original raw data.

Although these methods represent a saving on disk storage for data that is available for
searching, they are not suitable for an archival phase where logs are no longer available
for searching, but must be retained for compliance and/or possible later re-indexing. This
is due to the fact that the data forms an integrated part of the term index.

2.5 Summary

This chapter describes inverted index structure and the need for an entry identifier. The
entry identifier links the terms in the inverted index to the original data.

The random access compressed file describe by York (2001) introduces the concept of
breaking up the data into smaller blocks, then compressing each individual block. Ac-
cessing the data is faster as only the block containing the required data, must to be
decompressed. This approach offers both a saving on storage requirements and speeds up
retrieval time of the original data.

2.5. SUMMARY 12

The remainder of the chapter focused on the foundations of data compression. In par-
ticular LZ77 and the Burrows Wheeler Transformation algorithms are described, as the
compression methods used in this work are variants of the two algorithms.

The next chapter explains the proposed pseudo-random access compressed archive and
processing of the log files.

Chapter 3

Process Flow and Pseudo-Random
Access Compressed Archive

This chapter describes the process of event breaking from reading the initial log file
through to writing the processed data to storage. This includes a description of the data
structures used to create the Pseudo-Random Access Compressed Archive.

The chapter starts with timestamp extraction (Section 3.1), followed by the event break-
ing process (Section 3.2), and discusses the event structure, line breaking, line merging
and adding metadata. Section 3.3 introduces the archive file format covering variable
serialisation, header structure, event blocks and the tailing record.

3.1 Timestamp Extraction

Time is critical when working with log data. An event requires a time to qualify as an
event, otherwise it is just a data point. As an example knowing that the user John logged
into the system at 2014-04-14T10:14:32+0200 is far more valuable than knowing that
at some unknown time John logged into the system.

Timestamp extraction from a log entry consists of two phases: identify the start of the
timestamp and then parse the timestamp into its constituent parts. The next sections
discuss the methods used for timestamp extraction and problem use cases.

13

3.1. TIMESTAMP EXTRACTION 14

3.1.1 Timestamp Prefix

The first aspect of timestamp extraction is to determine where the timestamp is located
within the event. The part preceding the timestamp in the event is called the timestamp
prefix.

Regular expressions are used to find the start of the timestamp in a log line. The following
two samples obtained from the OSSEC1 web site are used as examples to further explain
this:

1 Jul 10 16:07:14 cisco2621 636: .Jul 10 15:58:56.590 EDT: %SEC-6-IPACCESSLOGP:

list 102 denied tcp 10.0.6.56(3067) -> 172.36.4.7(139), 1 packet

Listing 3.1: Cisco IOS log entry starting with a timestamp

In Listing 3.1, the timestamp is at the very start of the line and the timestamp prefix
can be matched with the regular expression ˆ. As ˆ matches the start of the text being
matched, it will always match a non-empty line.

1 4872: Dec 11 08:02:53.887 pst: %SEC-6-IPACCESSLOGP: list 100 denied udp

200.174.153.126(1028) -> 66.81.85.65(137), 1 packet

Listing 3.2: Cisco IOS log entry not starting with a timestamp

In Listing 3.2, the entry starts with the message identifier. The timestamp prefix can be
matched with the following regular expression \d+:\s. The regular expression matches
one or more digits (numbers between 0 and 9), a colon and a white space. This means
that for some log formats, as in the example above, the prefix will need to be manually
constructed.

The timestamp at the start of a line is a very common format. It is the format used in
all the sample log files in this research. Extracts of the log formats considered in this
research are given in Appendix B.

3.1.2 Timestamp Parsing

Timestamp parsing is the process of converting a sequence of ASCII characters, as found
in the input data, to a 64-bit integer representing the number of microseconds elapsed

1http://ossec-docs.readthedocs.org/en/latest/log_samples/cisco/cisco_ios.html

3.1. TIMESTAMP EXTRACTION 15

since the Unix Epoch, 1 January 1970. In the developed system, the parsing is performed
using the Poco C++ Library2 DateTimeParser class. The format syntax for the Date-
TimeParser is very similar to that of the strptime() function available in most standard
C++ libraries.

Many different formats are used to represent timestamps: some are based on standards
like ISO–8601 (ISO, 2005) and RFC 3339 (Klyne and Newman, 2002), while others are
based on what the software developers thought would be most appropriate.

Both Listings 3.1 and 3.2 utilise the same date format, which can be parsed using the
following DateTimeParser format %b %d %H:%M:%S, where %b represents the abbreviated
month, %d the numeric day of the month, %H hours, %M minutes and %S seconds.

In some formats, certain values are omitted. In the two listings above the timestamp
format excludes the year, the timezone offset with daylight savings time calculated and the
fraction of a second. The year and timezone are critical for accurate timestamp extraction.
The fraction of a second can improve the precision of later correlations between events.

Missing information forces the use of assumptions. The assumptions in the case of a
missing century or year is dependent on correct time synchronisation across all logging
devices and application. The following sections elaborate on the assumptions and risk
factors associated with each one.

3.1.3 Missing Century

Some timestamps only contain a two digit value representing the year, omitting the leading
two digits that indicate the century. This is the problem that created the Y2K issue where
a two digit year value became ambiguous when the century changed from 1900 to 2000.
An example of this format is 22/03/12, where the 12 represents the year.

The easiest assumption to make is that the logs being processed were generated in the
current century and the year can be completed by prepending a 20 to the year making it
2012. This will be valid for log entries generated between 2000 and 2099 and is extensible.

The second assumption that can be used is that if the year is greater than the current
year the century is the current century minus one. So if the current year was 2011 in the
example above, the year part of the event, twelve, would be greater than the current year,

2http://pocoproject.org/

3.1. TIMESTAMP EXTRACTION 16

eleven. The century would be calculated by taking the current century 20 and deducting
one from the current century giving the value 19 to prepend to the date. This results in
the value 1912. Similarly the current year in the example is 2013 and thus the century
value of the current year, 20, will be prepended to the year. This results in the value
2011.

The second assumption has a risk window where the absence of correct time synchroni-
sation between log generating devices/applications and the archiving server can lead to
incorrect assumptions at the rollover of the year.

Take the following as an example where the log server time is ahead of the time on
the archiving system: the current time on the archiving server is 2013-12-31T23:59:40
and the log entry is 2014-01-01T00:00:50 (01/01/14 00:00:50). Following the second
assumption, the timestamp extraction routine sees that the log entry year, 14 is greater
than the current time on the server and therefore the routine will take the current century
minus one and assign a timestamp of 1914-01-01T00:00:50 to the entry.

For the purposes of this work, we use the assumption that all the logs were generated
between 2000-01-01 and 2099-12-31.

3.1.4 Missing Year

A missing year value from a timestamp presents a major obstacle in determining the
correct timestamp of an event. Our first option is the use of some form of external
metadata like the last modified date time of the file containing the logs or the date time
encoded in a log file name (e.g., firewall_2014_03_12.log).

Using metadata in the file name is a very strong time anchor and should not complicate
the parsing process unnecessarily as the file name only has to be parsed once and then
passed to the parsing algorithm. This needs to be a configuration option for the specific
source type. The last modified date as reported by the file system has several possible
pitfalls, for example, some copy and archiving functions or options modify the date of the
file to the date the action was executed.

The second option is to make an assumption that the logs are less than a year old. The
algorithm for this subtracts the current year from the current timestamp. If the resulting
time value is greater than the parsed time, the value one is deducted from the current
century.

3.2. EVENT BREAKING 17

All the options fail in the case where the logs contain events spanning multiple years. For
the purposes of this work, we assume that all the logs relate to the current year, where
the year part is omitted from the timestamp.

3.1.5 Missing Timezone

A missing timezone can also affect the timestamp of an event. In Listing 3.3, for example,
if the clock on the device was set to Coordinated Universal Time3 (UTC) and the entry
is parsed on an archiver with the clock set to South African Standard Time4 (SAST),
the parser will extract the time of the entry as 2004-05-18T02:11:03+02:00 instead of
2004-05-18T04:11:03+02:00.

1 05/18/2004,02:11:03,Authen failed,bscorpio,punks,122.55.32.13,External DB user

invalid or bad password,,,15,10.27.3.1

Listing 3.3: Cisco Secure ACS log entry

When the search is initiated using the time range from 2004-05-18T04:00:00+02:00 to
2004-05-18T05:00:00+02:00, the event will not be listed in the output as it is stored
two hours in the past.

This also creates a time synchronisation problem that can affect the assumption stated
as the solution in the previous two sections, Missing Century (Section 3.1.3) and Missing
Year (Section 3.1.4).

3.2 Event Breaking

Event breaking is the process whereby a log file is read line-by-line and converted into
a single entry. An entry can consist of more than one line, which is called a multi-line
event. The entry is then enhanced by the addition of metadata to become a standalone
event that can be stored in the archive. The following sections explain the event structure
and each element of the event breaking process, followed by a summary of event breaking
process flow (Section 3.2.6).

3http://www.timeanddate.com/time/aboututc.html
4http://www.timeanddate.com/library/abbreviations/timezones/africa/sast.html

3.2. EVENT BREAKING 18

3.2.1 Event Structure

Events are stored in an archive, in a key-value pair array, referred to as a field. The key
is the field name and the value represents the field value.

This event data structure is used by the archiver to store the event data in memory during
archiving and when retrieving events from the archive. Section 3.5 explains how the event
structure is represented on disk.

Figure 3.1 depicts the event structure consisting of the Event class, which contains a
vector of EventField’s. The EventField class represents the key-value pair of a field
where the name property is the key and the type property indicates what type of data
the field holds. The numericValue holds both timestamp and numeric value types, while
the stringValue stores the string value type.

����������	
���

���������	
���
���������
��	����������
�����������
����	������

���������	
����������	��
������������	������
������� ������!��"�
����	�� ���������	��

�����
�#	������ �$�
��������	����

�

%

Figure 3.1: Structure of an event

3.2.2 Generic Fields

A number of generic fields are defined to store internal fields in the event data structure
(Section 3.2.1). These fields, described in Table 3.2, are populated during the event
breaking process.

These generic fields cover all the use cases for this implementation and no additional fields
are created. Non-generic fields are only created when additional archive time extraction
is done, which needs to be stored in the archive on disk.

To illustrate the generic fields, we use as an example the Squid proxy log entry (Listing
3.4) created on 2014-11-08T08:45:44+0200 in the log file /var/log/access.log on the
server with the host name proxy.example.conf and archived one minute later.

3.2. EVENT BREAKING 19

Table 3.1: Generic fields for events

Field Name Description

_data Represents the original entry in the log file. A
single or multiline event depending on the line
merging settings (Section 3.2.4)

_time Holds extracted timestamp of the event in
Coordinated Universal Time (UTC) (Section
3.1).

_tz Timezone offset as extracted from the entry
(Section 3.1).

_archivetime Coordinated Universal Time of when the
event was added to the archive.

_datatype, _source and _host Additional metadata added to an entry (See
Section 3.7).

1 1380042813.978 29679 196.23.167.67 TCP_MISS/200 4629 CONNECT sites.google.com

:443 - DIRECT/155.232.240.59 -

Listing 3.4: Squid proxy log entry showing generic field values

Table 3.2: Example event with field values

Field Name Field Value

_data 1415429144 29679 196.23.162.64
TCP_MISS/200 4629 CONNECT
sites.google.com:443 -
DIRECT/155.232.240.59 -

_time 2014-11-08T06:45:44Z
_tz 120
_archivetime 2014-11-08T06:46:44Z
_datatype proxy
_source /var/log/access.log
_host proxy.example.tld

3.2.3 Line Breaking

The line breaking process starts by reading the log file and extracting single lines from the
file. This implies that the work only uses text log files, as binary log files need specialised
parsing to extract event information and is beyond the scoped objectives (Section 1.3).

Furthermore this work only focuses on text log files that end with either a carriage return
(0x0D)(\r) and/or new line (0x0A)(\n) ASCII characters as this is the most common

3.2. EVENT BREAKING 20

format for log files. This is largely due to them being human readable for troubleshooting
at the command line, which is very common on Unix-based systems.

Line break detection is done using the regular expression [\r\n]+, which matches one or
more carriage returns and/or new line characters. These lines serve as the input for the
rest of the event breaking process, finally resulting in a complete event. Line breaking on
its own does not define an event as with some log formats an event can consist of multiple
lines, for example, Windows event logs (see Section B.2).

3.2.4 Merging Lines

Log entries can be contained in a single line or multiple lines. Aggregating the lines to
construct an entry is called line merging.

Two user-configurable options can greatly assist with this process, but are not absolutely
required. These options can simplify the basic line-merging decision-making algorithm.

The first option is specifying whether the log entries are single- or multi-line. If this option
is set to single-line then each line is converted into an event with no further processing.
Single-line events are predominant in the sample logs under consideration.

The second option is only used in the case of multi-line events, such as Windows event
logs (Section B.2), and specifies whether a new event starts with a timestamp. The line
merger collects lines until it encounters a line containing the timestamp as defined by the
timestamp prefix and timestamp format. The previously collected lines will then form
the whole entry and the new line containing the timestamp is the start of the next entry.

3.2.5 Metadata

Metadata is added to enhance the log event with additional information by the archiv-
ing system. The metadata adds both storage and processing overhead, but provides an
increased search retrieval speed when performing searches on the data.

For example, assume that the firewall logs are stored in a file with the name firewall.log.
The firewall logs can be stored in an archive with other types of logs, e.g. Windows Event,
SSH and DHCP logs by the implementation. With metadata the search module only has
to load the block containing entries with the metadata field source set to “firewall.log”.

3.2. EVENT BREAKING 21

Any blocks not loaded, because the source field is not set to “firewall.log”, will reduce the
retrieval time as they do not have to be retrieved from disk or uncompressed. Table 3.2
shows the metadata for an example entry.

3.2.6 Event Breaking Process Flow

Having defined the process elements, we now describe the process flow of event breaking.
Figure 3.2 depicts a flow chart describing the process flow.

Start

Read
Line

Option Multi-line

Add Line to Line
List

Extract Time
Stamp

Add Meta Data

Output
Event to
Archiver

Clear Line List

Extract Time
Stamp

Line Has
Timestamp

And Line to Line
List

Add Meta Data

Output
Event to
Archiver

Clear Line List

False

End of
Stream

True

False

Is list of
lines empty

Stop

Add Meta Data

Output
Event to
Archiver

False

True

TrueFalse

True

Figure 3.2: Event breaking process flow

The process starts by reading a line from the input stream based on the line breaking
rules described in Section 3.2.3.

3.3. EVENT ARCHIVER 22

If the log-specific configuration specifies that the source has single line events, the line is
added to the list of lines, and the timestamp is extracted. Metadata is added to the entry
to create the event. The event is passed to the archiver, discussed in Section 3.3, after
which the list of lines is cleared and the next line is read from the input stream.

If break on timestamp is enabled, the line is first parsed to see if it contains a timestamp.
A line without a timestamp is added to the list of lines and the next line is read from the
input stream. If the line contains a timestamp, the lines currently in the list forms the
whole entry, and metadata is added to the entry to create the event that is then passed to
the archiver. The list of lines are cleared and the current line, containing the timestamp,
is added to it. The next line is then read from the input stream.

When event breaking has been completed the event is passed to the archiver for storing
and indexing.

3.3 Event Archiver

As in the model described by York (2001), the archiver utilises a header structure at the
start of the file followed by blocks of compressed data containing events. In addition, the
block offset list, metadata and tailing record are also added to the end of the archive.
Figure 3.3 depicts an overview of the structures composing the archive.

Header

Tailing
Record

Data Block 0

Data Block 1

Data Block NBlock Offset
List

Metadata
Block

Event 0

Event 1

Event N

Data Blocks

File

Figure 3.3: Pseudo-random access compressed file format

3.3. EVENT ARCHIVER 23

The process of persisting values to storage is called serialisation. The following sections
describe the different serialisation methods used in the implementation.

3.3.1 Variable Width Integers

In many cases, the use of fixed width integers is space inefficient and a reasonable saving
in storage space can be achieved by encoding fixed length integers into variable length
integers.

The method is used in a number of solutions including ASN.1 DER/BER encoding5,
LLVM Bitcode File Format6, DWARF Debugging Information Format7, Dalvik Exe-
cutable Format8 (used by the Android operating system) amongst others.

The method used in this work is based on a variant of Little Endian Base 128 encoding,
originally defined as part of the DWARF 3.0 Debugging Format Standard (Workgroup,
2005, pp. 139–141), extended for 64-bit unsigned integers.

The algorithm uses the most significant bit of a byte as a marker to indicate whether
additional bytes follow; if set to 1, another byte is indicated for the integer. This means
that only 7 bits are available for the storage of data.

The encoding and decoding source code is shown in Listings 3.5 and 3.6, respectively.
Error and boundary checking is removed to simplify the explanations.

1 void encode(unsigned long long value, unsigned char* buffer)

2 {

3 do

4 {

5 unsigned char c = (unsigned char)(value & 0x7F);

6 value >>= 7;

7 if (value) c |= 0x80;

8 *buffer = c;

9 buffer++;

10 } while (value != 0);

11 }

Listing 3.5: Variable width integer encoding source

5http://www.itu.int/ITU-T/studygroups/com17/languages/X.690–0207.pdf
6http://llvm.org/docs/BitCodeFormat.html#variable-width-value
7http://dwarfstd.org/doc/Dwarf3.pdf
8http://www.netmite.com/android/mydroid/dalvik/docs/dex-format.html

3.3. EVENT ARCHIVER 24

Encoding starts by masking the seven least significant bits of the value variable and
assigning the result to variable c. The bits in value are then shifted to the left seven
times effectively removing the bits assigned to c. If the value is non-zero the most
significant bit is set on c to indicate that more bytes follow and c is assigned to the
output. This process continues until value is zero.

1 unsigned long long decode(unsigned char* buffer)

2 {

3 unsigned long long value = 0;

4 int shift = 0;

5 char c;

6 do

7 {

8 c = *buffer;

9 unsigned long long x = (c& 0x7F);

10 x <<= shift;

11 value += x;

12 shift += 7;

13 buffer++;

14 } while(c &0x80);

15 return value;

16 }

Listing 3.6: Variable width integer decoding source

Decoding starts by taking the first character from the input, masking out the least signif-
icant bits and assigning the result to variable x, which is shifted to the right based on the
value of the shift variable, and finally assigned to the result value. shift is incremented
by seven for the next right shift if more input is required. If the current character has
the most significant bit set, the process continues with the next character from the input,
else the result is returned. Table 3.3 provides examples of variable width integer encoded
values.

The table shows that up to and including the number 562,949,953,421,311, encoding
reduces the storage space required to serialise an integer. From 562,949,953,421,311

up to and including the number 72,057,594,037,927,935, encoding does not save any
space, but does not require additional storage. Upwards of 72,057,594,037,927,935

encoding requires more storage than the size of a 64-bit unsigned integer, which is 8
bytes. The largest possible value of a 64-bit integer is 18,446,744,073,709,551,615

and this value requires two additional bytes for storage.

3.3. EVENT ARCHIVER 25

Table 3.3: Examples of variable width integers values

Value Bytes Used Binary Representation

20 1 00010100
400 2 10010000 00000011
10,000 2 10010000 01001110
16,384 3 10000000 10000000 00000001
2000,000 3 10000000 10001001 01111010
500,000,000 5 10000000 11001010 10110101 11101110

00000001
562,949,953,421,311 7 11111111 11111111 11111111 11111111

11111111 11111111 01111111
1388,527,213,000,000 8 11000000 11101010 10101010 11111010

10111010 11011011 10111011 00000010
72,057,594,037,927,935 8 11111111 11111111 11111111 11111111

11111111 11111111 11111111 01111111
9223,372,036,854,775,807 9 11111111 11111111 11111111 11111111

11111111 11111111 11111111 11111111
01111111

18,446,744,073,709,551,615 10 11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111111
11111111 00000001

The value 1388,527,213,000,000 is the number of microseconds from 1 January 1970,
the Unix epoch date, for the timestamp 2013-12-31T22:00:13.000000Z. The encoding
results in 8 bytes of storage, which is exactly the same as the storage required for a fixed
width 64-bit unsigned integer.

Some overhead is introduced by this method as well as edge cases where the method can
add up to two bytes of storage in addition to the original width of the integer, but the
space saving for lower values and avoiding the need to convert between big endian and
little endian byte orders makes this a desirable solution.

All integers in the archiving format are unsigned integers, with the exception of the trailing
record and timestamps that are stored as variable width integers.

3.3.2 Fixed Width Integers

Fixed width integers, including 32- or 64-bit signed and unsigned integers, are serialised to
storage in little endian (Blanc and Maaraoui, 2005) format. The serialisation process first
checks if the system is using big endian or little endian integer registers. If big endian is

3.4. ARCHIVE HEADER 26

used, the bits in the variable are flipped to be in little endian format. The entire variable
is then written to disk as an array of characters. On reading, the process is reversed.

The choice between using fixed and variable width integers is done at design time for
structures and at write time for field types. Timestamp field types and structure data
members are stored as fixed-width integers while all other numeric field types and data
members are stored as variable-width integers. The only exception to storing non times-
tamp data members as variable-width integers is in the tailing-record structure where the
reason for the exception is explained in full in Section 3.8.

3.3.3 Strings

When serialising a string the length of the string is variable width encoded and written
to output. This length value is followed by the 8-bit characters of the string omitting the
null terminator (0x00) typically found in C and C++ strings. The null terminator is used
to indicate the end of a string, but as the length of the string is already known, the null
terminator is not required.

3.4 Archive Header

The header provides identification, version and other information about how the options
are used to construct the archive. This enables an archive reader to extract the information
contained in the archive correctly.

Figure 3.4 shows the fields of the header consisting of the file signature, format version,
compression method, block size and maximum event size.

File Signature is the string “logle”. This is a “magic”9 signature that identifies the file
as a log archive storage.

Version is a variable width integer with the value 0x01. This is used by the parser to
ensure that it can read the archive and for future expansion.

Compression Method is a variable width integer indicating the compression method
used to compress the data blocks within a particular archive file. Currently defined values
are listed in Table 3.4.

9http://www.magicdb.org

3.4. ARCHIVE HEADER 27

���������	
��
���������	
�����
������������
����������	��	�������
�������������
����������
��� !�������"�
����#���$%� !�������"�
����
�����$��&���	��	�������
�������������
���
� 	�� � '���
��&���	��	�������
�������������
�����

((��� ��	
���))

�����������������
�
���������
�&������*
��& 	���+
��& 	*����
��&����,

Figure 3.4: Archive header fields

Table 3.4: Compression method options in the archive header

Value Method Name Library Used

0x01 none No compression is performed on the data
blocks

0x02 zlib Uses the GZIP compression functions
contained in the zlib library

0x03 lzma Uses the original LZMA library
0x04 lzma2/xz Uses the new LZMA version 2 library, also

known as XZ
0x05 lz4 Uses the LZ4 library

Block Size is a variable width integer denoting the default block size. This is needed as
later in this research we investigate the properties of the different compression methods
applied to different data block sizes. This value also enables the log parser to allocate
a memory pool of blocks to minimise the overhead associated with repeated memory
allocation.

Maximum Event Size is a variable width integer that stipulates the maximum size in
bytes of a single event. The value is used to limit the size of the block chain that can be
created before the data block is committed to disk. This value is used to calculate the
pre-allocated memory used to store the maximum possible event size. The total size is
calculated by taking the Maximum Event Size and adding one Block Size to provide
for possible boundary over writes.

3.5. EVENT DATA BLOCKS 28

3.5 Event Data Blocks

Event data blocks contain the serialised event data. Each block starts with a block header
followed by a variable number of events.

Figure 3.5 depicts the composition of a single event data block showing all the components.
The next sections explain the block header structure, how events are serialised, event
identifiers and block offset records.

EventDataBlockHeader
+blockSignature: Int32 = 0xDECAB000
+sequenceNumber: Variable Width Unsigned Int 32
+compressedSize: Variable Width Unsigned Int 32
+uncompressedSize: Variable Width Unsigned Int 32EventDataBlock

+header: EventDataBlockHeader
+events: EventData

EventData
+archiveTime: Signed Int 64
+eventTime: Signed Int 64
+eventTimeZone: Variable Width Signed Int 32
+data: String
+fields: Key-Value

1

*

EventDataBlockOffset
+sequenceNumber: Variable Width Unsigned Int 32
+offset: Variable Width Unsigned Int 64
+compressedSize: Variable Width Unsigned Int 32
+uncompressedSize: Variable Width Unsigned Int 32
+firstEvent: Signed Int 64
+lastEvent: Signed Int 64

EventIdentifier
+eventDataBlockSequenceNumber: Variable Width Unsigned Int 32
+offset: Variable Width Unsigned Int 32

Figure 3.5: Event data block structure

3.5.1 Event Data Block Header

The event data block header is depicted in Figure 3.5 under the name EventDataBlockHeader.
Blocks starts with a block header providing a block signature identifying the start of the
event block, the block sequence number, compressed size and uncompressed size of the
event data.

3.5. EVENT DATA BLOCKS 29

Block Signature is a 32-bit integer constant set to 0xDECAB000, which is used to identify
the start of the block within the archive.

Sequence Number is a variable width integer denoting the sequence number of the
block in the archive. As each block is created the sequence number is incremented. This
sequence number is one of the numbers used to uniquely identify an event as described
in Section 3.5.3; this is similar to a row number in a traditional database system. This
sequence number is later combined with the block number to create an entry identifier
that can be used to uniquely identify the event and used to retrieve the event from the
archive.

Compressed Size is a variable width integer specifying the size in bytes of the com-
pressed event data that follow. This provides the reading procedure with the number of
bytes to read from the disk.

Uncompressed Size is a variable width integer specifying the size in bytes of the uncom-
pressed data. This provides the archive reader with information to verify that sufficient
memory is available as well as a test to verify that the uncompressed data is the same
length as the original event data as calculated at the time of writing the event data to
the storage.

3.5.2 Serialised Event Data

The event breaking process as described in Section 3.2 results in an array of fields con-
sisting of key-value pairs. The format of the serialised event is shown as EventData in
Figure 3.5.

To explain event serialisation the following example of the PF firewall log entry (Listing
3.7) created on 2014-03-03T10:24:56+0200 in the log file /var/log/firewall.log on
the server with the host name firewall.example.conf and archived 10 seconds later, is
used. Table 3.5 represents the event of the example log entry with all the fields.

1 Mar 3 10:24:56 11.123.215.66 10: 20:25.746726 rule 0/0(match): block in on em1:

11.130.45.170.3835 > 67.253.14.169.6874: UDP, length 44

Listing 3.7: PF log entry to show event serialisation

The current date and time are assigned to the _archivetime field; this value is then
written to the archive as a fixed width 64-bit integer. The _time, _tz and _data fields

3.5. EVENT DATA BLOCKS 30

Table 3.5: Example event with field serialisation

Field Name Field Value Serialised Value

_data Mar 3 10:24:56 11.123.215.66 10:
20:25.746726 rule 0/0(match): block
in on em1: 11.130.45.170.3835 >
67.253.14.169.6874: UDP, length 44

_time 2014-03-03T08:24:56Z
_tz 120
_archivetime 2014-03-03T08:25:06Z
_datatype firewall
_source /var/log/firewall.log
_host firewall.example.conf

(Section 3.2.1) are extracted from the field array. The _time is written as a fixed width
64-bit integer and _tz is written as a variable width integer followed by the _data, which
is written as a string. The remaining fields in the array are written as field key-value
pairs.

The field names are very repetitive as they are present in every event and can add a large
storage overhead. For example, consider an archive that holds a million events, each with
a _datatype field. Serialising the field name requires nine bytes, eight bytes for the name
and one byte for the length of the string. This will add 9,000,000 uncompressed bytes to
the raw archive.

To alleviate the problem, a lookup is created to associated field names with numbers dur-
ing the serialisation of events in an event block. The first time a field name is encountered
and it is not in the lookup, the name is written to the data block, added to the lookup,
a sequence number is assigned to the field name and then the sequence number is also
written to the store. If the field name is found in the lookup only the associated sequence
number is written to the storage. In cases where there are less than 127 fields, the se-
quence number is only one byte in size, thereby eliminating the storage of the length and
bytes needed to represent the full field name string. Table 3.6 shows a field name lookup.

Table 3.6: Serialisation field name lookup example

Field Name Index

_datatype 1
_host 2
_source 3

Some metadata fields, like field names are also repetitive and use the same lookup mecha-

3.5. EVENT DATA BLOCKS 31

nism as the field names to save storage space. Consider for example, an archive containing
a million events, of which 25% are from the source file /var/log/messages. The filename
is stored in the _source field. Each _source field adds 17 bytes for the characters and one
byte for the string length adding 4,250,000 uncompressed bytes to the archive. The fields
that are optimised are _host, _source and _datatype, which represent the metadata
that is most repetitive. Table 3.7 shows an example field key-value list where the values
specific to the log example used are highlighted.

Table 3.7: Field key-value lookup for both the PF firewall example as well as other events

Field Name Field Value Index

_datatype dns 1
_datatype firewall 2
_datatype proxy 3
_host firewall.example.conf 1
_host ns.example.conf 2
_host proxy.example.conf 3
_source /var/log/access.log 1
_source /var/log/firewall.log 2
_source /var/log/named.log 3

For all other fields the raw field value is written to the storage: numeric fields are vari-
able width encoded, timestamp fields are written as fixed width integers and strings are
serialised as described above. Table 3.8 shows the values as they are written to the archive.

Both the field name and meta field value lookups introduce processing overhead, but the
space saving achieved by these methods is significant as these are highly repetitive in
nature.

3.5.3 Event Identifier

The event identifier serves as a unique identifier for a single event in a single archive as
well as the parameters needed to retrieve an individual event. The event identifier is
created after each event has been serialised. Figure 3.5 contains a depiction of the event
identifier (EventIdentifier). As shown the identifier consists of an event data block
sequence number and an offset of the event in the block.

Event Data Block Sequence Number is a variable width integer indicating the block
that contains the event. This points to an entry in the Block Offset List (Section 3.5.4).

32

Table 3.8: Serialised PF log event

Data Written to Archive Description

0004F3AF865E5C80 _archivetime is a fixed width 64-bit integer
representing the microseconds elapse since 1
January 1970.

0004F3AF85C5C600 _time is a fixed width 64-bit integer
representing the microseconds elapse since 1
January 1970.

78 _tz is a variable width integer.
88014D61722020332031303A3234
3A35362031312E3132332E323135
2E36362031303A2032303A32352E
3734363732362072756C6520302F
30286D61746368293A20626C6F63
6B20696E206F6E20656D313A2031
312E3133302E34352E3137302E33
383335203E2036372E3235332E31
342E3136392E363837343A205544
502C206C656E677468203434

First, the length of the _data field is written
as a variable width integer (0x8801); this is
then followed by the contents of the string.

0102 _datatype field with the field name lookup
value of 1 (Table 3.6) and the field value
lookup value of 2 (Table 3.7).

0201 _host field with the field name lookup value
of 2 (Table 3.6) and the field value lookup
value of 1 (Table 3.7).

0302 _source field with the field name lookup
value of 3 (Table 3.6) and the field value
lookup value of 2 (Table 3.7).

3.6. BLOCK OFFSET LIST 33

Offset is a variable width integer denoting the offset of the event within the uncompressed
event data block.

3.5.4 Event Data Block Offset Record

The block offset record holds the meta information for each event data block as it is
written to the storage. Figure 3.5 shows how the event data block offset record fits into
the event block design (EventDataBlockOffset).

The record contains the sequence number, start offset of the block within the archive file,
the compressed and uncompressed sizes of the block and the timestamps of the earliest
and latest events contained in the block. This information is used by the archive reader
to retrieve the block from the archive file and to extract the events from the block when
presenting results from searches.

Sequence Number is a variable width integer containing the sequence number of the
block.

Offset is a variable width integer with the offset of the event data block within the archive
file.

Compressed Size is a variable width integer denoting the compressed size of the block
as it is found in the archive file.

Uncompressed Size is a variable width integer denoting the uncompressed size of the
block in memory.

First Event is a signed 64-bit integer holding the UTC timestamp of the first event in
the block.

Last Event is a signed 64-bit integer holding the UTC timestamp of the last event in
the block.

3.6 Block Offset List

The block offset list serves as a directory of the location of each event data block in the
storage. As each block is written to the archive, the block offset record (Section 3.5.4) for

3.7. METADATA 34

that block is added to the list. This list is written after the last event data block and the
start offset of the list in the archive have been assigned in the tailing record (see Section
3.8).

3.7 Metadata

The lookup tables for fields and metadata are written as the last compressed block of the
archive. Each lookup starts with a variable width encoded integer containing the number
of entries in the lookup. Each lookup entry is then written starting with the variable
width encoded sequence number, and followed by the string representing the value.

3.8 Tailing Record

The tailing record is used by the archive reader to read the block offset list and the
metadata lookups.

TailRecord
+recordSignature: Unsigned Int 32 = 0xDECABE0F
+uncompressedSize: Unsigned Int 32
+compressedSize: Unsigned Int 32
+blockOffsetListOffset: Unsigned Int 64
+metadataBlockOffset: Unsigned Int 64

Figure 3.6: Tailing record fields

Data fields of this record are not variable width encoded. This provides a fixed sized
record that the archive reader can seek at the end of the storage. Figure 3.6 shows the
fields of the tailing record, which are explained below.

Record Signature is a 32-bit unsigned integer constant with the value 0xDECABEOF,
which is used to identify the record for validation by the reader. If this value does not
match, the storage is incomplete and must be repaired.

Uncompressed Size is a 32-bit unsigned integer specifying the uncompressed size meta-
data block.

3.9. SUMMARY 35

Compressed Size is a 32-bit unsigned integer specifying the compressed size of the
metadata block as written to the storage.

Offset of the Block Offset List is a 64-bit unsigned integer holding the offset of the
block offset list within the storage.

Offset of Metadata Block is a 64-bit unsigned integer holding the offset of the block
containing the metadata.

3.9 Summary

This chapter described a structure for a pseudo-random access compressed archive and
the process flow involved in taking a log file, converting it into individual events and
storing these in the archive.

The design incorporates the ability to retrieve single events from the archive without
uncompressing the entire file. The entry identifier serves as a record number and makes
it possible to create an inverted file (Zobel and Moffat, 2006), which serves as the basis
of the IR engine.

The next chapter explores the compression methods available for compressing the indi-
vidual event data blocks.

Chapter 4

Evaluation of Compression Methods

The objective of this chapter is to evaluate different compression methods to identify those
suitable for inclusion in the pseudo-random access compressed archive performance testing
in the next chapter. This also establishes a base line that can be used to measure the
performance of the archiving process including compression ratio, compression time and
decompression time. The following sections describe the experimental design, execution
and results of the experiment, as well as the conclusions drawn.

4.1 Experimental Design and Execution

This experiment evaluates the performance of various command line compression tools
available in the FreeBSD operating system as applied to small blocks of data. The block
approach mimics the approach taken in a pseudo-random access compressed archive. A
Python1 (version 2.7) script is used to execute a number of compression methods on a
number of predefined size blocks (64KB, 128KB, 256KB and 512KB) on a variety of log
file types. A range of block sizes is used to investigate the impact of the block size on the
different compression methods and compression options.

4.2 Compression Tools

With the exception of lz4, the compression tools are the default tools available in the
FreeBSD 10 base operating system and FreeBSD ports. lz4 was downloaded directly

1https://www.python.org/

36

4.3. LIMITATIONS 37

from the developers’ website2 as the version available in the FreeBSD ports system was
version r101, whereas the latest version at the time of the experiment was r116.

The command line tools and the versions used in this experiment are listed in Table 4.1.

Table 4.1: Compression tools

Application Version

gzip FreeBSD gzip 20111009
bzip2 Version 1.0.6, 6-Sept–2010
lzma liblzma 5.0.4, xz (XZ Utils) 5.0.4
xz liblzma 5.0.4, xz (XZ Utils) 5.0.4
lzop lzop 1.03, LZO library 2.06
lz4 r116

When running the command-line tools with the –version, parameter both xz and lzma

report using the same library (liblzma 5.0.4) where xz is the more modern version of lzma
and is also known as lzma2.

With the exception of lz4, the tools selected represent utilities in regular use in Unix-type
operating systems, especially for package compression. They also represent a variety of
different compression methods. lz4 was included because of its use in the ZFS file system
and the reported compression and decompression speed benefits as discussed by Kiselkov
(2013), among others.

4.3 Limitations

Various factors can distort the results obtained in this experiment. These include data
bias, implementation of the command line tools, disk access caching of the files to be
compressed and loading of the tools with the libraries needed to execute the command-
line tools.

4.3.1 Data Bias

Compression ratios achieved by tools are greatly influenced by the entropy of the data be-
ing compressed. With a higher entropy of data, lower compression is to be expected (Shan-
non, 2001).

2https://code.google.com/p/lz4/

4.3. LIMITATIONS 38

The entropy of log data can vary based on the applications or systems that created the
log files. For example, the logs from the firewall systems have a lower entropy than those
generated by the proxy system. The firewall log contains IP addresses with mostly the
same length and have repetitive values, while proxy log entries contain uniform resource
identifiers (URI) (Berners-Lee, 1998), which can be very expansive and have varying
values.

Entropy can also vary within the different parts of the log files. It can happen that the
entropy in the first 512KB of the file is different from that of a 512KB block in the middle
of the same log file. This can be due to user behaviour, for example a proxy may show
little activity between the hours of midnight and 04:00 mostly going to similar update
web servers, whereas during office hours many users are likely to access a greater number
of web servers, thereby creating greater entropy.

A variety of log samples from different applications were used to provide a better insight
into the performance of the tools for different entropy values. Using only a small sample
of each type of log type can also introduce data bias, but the samples should be sufficient
for evaluation purposes.

All test runs cover exactly the same total size of log samples regardless of the block size
and tool used to ensure that all the methods and blocks covered the same entropy. In the
case of this testing, 160 64KB blocks and 20 512KB blocks of the same sample were used
to cover the same 10MB of data, which comprises the whole test sample. The numbers
of each block size are listed in Table 4.2.

Table 4.2: Test file sizes used in compression test

Block Size Count Total Size

64KB 160 10MB
128KB 80 10MB
256KB 40 10MB
512KB 20 10MB

4.3.2 Disk Access Caching

Operating systems and disk drive firmware implement caching of disk inputs and outputs
to optimise disk access time. Caching uses random access memory (RAM) to speed up
reading and writing from and to the disk by storing copies of the most recently accessed

4.4. IMPLEMENTATION 39

data in RAM. The data in memory is used to reduce input and output operations on the
disk when the same data is reused by the operating system or software. This can mean
that loading of the data sample files, command line tools and their associated libraries
may differ during different stages of the execution of the experiment.

As the influence of caching cannot readily be quantified in the experiment we ran the same
experiments a number of times. This should lessen the impact of caching. Additionally,
the mean execution times were calculated for each run to mitigate caching distribution
bias, while the standard deviation should highlight any excessive deviation within the
data set.

4.3.3 Tool Implementation

Each tool has it own unique implementation for reading the input file, processing and
writing the output file. They may have varying levels of optimisation that can distort the
actual time performance of the compression or decompression algorithms.

Evaluating the optimisation of the source code implementation of each command line tool
falls outside the scope of this experiment as this cannot be accurately quantified based
solely on studying the source code. However, it is reasonable to expect that there are no
serious flaws given the widespread use of the tools.

4.4 Implementation

The experiment was executed using four Python scripts each performing a specific func-
tion. The first script was used to calculate the Shannon entropy for each of the log
samples as well as two additional base line files, which was then hard-coded into the third
script, where the values are used for calculating part of the statistical information. The
next script executed the command-line utilities on the samples and saved the results in a
comma-separated values (CSV) file format (Shafranovich, 2005). The third script used
the results from the second stage and performed statistical calculations and rankings of
each tool. The final script loaded the results from the second stage and rendered the
charts and tables included in the results (Section 4.5) and Appendix C. The details are
discussed below.

4.4. IMPLEMENTATION 40

4.4.1 Sample Log Files

Sample log files were used to generate the compression performance data. Seven log files
were selected from six diverse applications to address some of the data bias issues discussed
above. Table 4.3 shows the list of applications that generated the log files which were
used by the scripts. The logs are samples from PF Firewall3, Windows Security Events4,
BIND5, Squid Proxy6, Postfix MTA7 and PCAP8. This table gives the application name,
short name used in the rest of the thesis and a description of the function performed by
the application. Log extracts for each sample application can be found in Appendix B.

Table 4.3: List of applications that generated the sample log files

Application Short Name Description

PF Firewalls firewall PF is the OpenBSD and FreeBSD
firewall.

Windows Security Event
Logs

windows-event Microsoft Windows Security Event Logs.
The events were extracted from the
Windows Management Instrumentation
(WMI) and written to a continuous text
file.

BIND dns BIND is a widely used Domain Name
Service found in Unix type operating
systems.

Squid Proxy Logs proxy Squid is a widely used open source web
proxy.

Postfix Mail Logs mail Postfix is a popular open source mail
transport system.

PCAP Files pcap-text,
pcap-binary

The pcap capture file format is
commonly used by network diagnostic
tools. The files are binary and can be
converted to text. The binary sample file
is the abbreviated format containing
packet header information. The text file
is the binary file converted to text,
containing the same abbreviated
information.

3http://www.openbsd.org/faq/pf/
4http://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx
5http://www.isc.org/downloads/bind/
6http://www.squid-cache.org/
7http://www.postfix.org/
8http://www.tcpdump.org/manpages/pcap.3pcap.html

4.4. IMPLEMENTATION 41

4.4.2 Shannon Entropy

Shannon Entropy (Shannon, 2001) is calculated for each 10MB sample log type and two
additional baseline files, one containing 10MB of zero value bytes and one containing
10MB of random data.

The commands used to generate the zero and random filled baseline files are shown in
Listing 4.1.

1 dd bs=1024 count=10240 if=/dev/zero of=baseline_zero.dat

2 dd bs=1024 count=10240 if=/dev/urandom of=baseline_urandom.dat

Listing 4.1: Shannon baseline file generation

The entropy code is generated based on the Python source code, given in Listing 4.2,
from the Rosetta Code9 website.

1 import math

2 from collections import Counter

3
4 def entropy(s):

5 p, lns = Counter(s), float(len(s))

6 return -sum(count/lns * math.log(count/lns, 2) for count in p.values())

Listing 4.2: Python implementation of Shannon entropy calculation

4.4.3 Executing Command Line Tools

Generating the compression performance data starts by extracting small blocks from the
sample files. Then each of the blocks are compressed twice using the fastest and the best
compression option, where the best option provides the best compression ratio at the
expense of compression time and the fastest option provides the fastest compression time
at the expense of compression ratio. After each compression operation, the decompression
tool of the compression tool is used to decompress the block.

The test cycle begins by extracting 160 64KB blocks, 80 128KB blocks, 40 256KB blocks
and 20 512KB blocks from the first 10MB of the sample files. For each tool and option the
following metrics were collected; compression time, decompression time, original file size

9http://rosettacode.org/wiki/Entropy#Python:_More_succinct_version

4.4. IMPLEMENTATION 42

and compressed file size. The cycle was repeated 20 times and the results were written to
a CSV file for further processing.

4.4.4 Compression Ratios

Compression ratios represent a measurement of the space saving achieved by using a spe-
cific compression method. This is calculated for each compression method by option,
sample log type and block size. Compression ratio is calculated by dividing the uncom-
pressed file size by the compressed file size. This is done by totalling the uncompressed
and compressed file sizes for each result in a given population, and then dividing the
uncompressed file size total by the compressed file size total. For the example discussed
in Section 4.4.2, the 3200 uncompressed and compressed file sizes for the 64KB block
extracted from the first 64KB of the firewall sample file, compressed with gzip -1 are
totalled and the compression ratio is then calculated, giving the 64KB block firewall
compression ratios for gzip -1.

4.4.5 Mean

The calculation stage reads the results from the data generation stage and calculates the
means of the compression ratio, and compression and decompression times. Additionally
the standard deviation is calculated for the compression and decompression times. No
standard deviation is calculated for the compression ratio as this is the same for each
block.

The mean is calculated by separately totalling the compression ratio, compression times
and decompression times for each compression method by option, sample log type and
block size. These totals are then divided by the number of blocks in the sample population.
As an example, the 3200 compression time results for the 64KB block extracted from the
first 64KB of the firewall sample file, compressed with gzip -1 are totalled and divided
by 3200 providing the mean compression time for the 64KB block firewall compression
using gzip -1.

The second part then allocates weights to each block by compression method and sample
file type based on the ranking of each method per metric. This process is described in
the next section (Section 4.4.6).

4.5. EVALUATION OF RESULTS 43

4.4.6 Weighting

The results from the first statistical calculations (Sections 4.4.4 and 4.4.5) are used to
assign weights to each compression method by option, block size and sample log file type.
This is performed for the compression ratio, mean compression time and mean decom-
pression time. For each compression method per block size per sample type, the data is
sorted in descending order of performance. The highest value is assigned a weighting of
13 and the lowest 1.

4.4.7 Standard Deviation Calculation

Standard deviation is calculated by totalling the square of the difference between the mean
and the value of each metric used to calculate the mean above. The square root of the
total provides the standard deviation for that metric. Continuing with the example above
the square of the difference between the compression time and mean compression time
for each of the 3200 results is totalled. The square root of the total gives the standard
deviation for the 64KB block firewall compression using gzip -1.

The data points within one, two, three and four standard deviations are calculated by
calculating the difference between the mean and the value of each metric divided by the
standard deviation. These results are saved to disk for further analysis.

4.5 Evaluation of Results

In this section we discuss the results obtained from the experiment starting with the Shan-
non entropy and standard deviation and finally evaluating the compression performance
results.

4.5.1 Shannon Entropy Results

The Shannon Entropy is the entropy values calculated for each sample and baseline file.
The entropy values are between 0 and 8 denoting the entropy in bits.

Table 4.4 shows the values obtained from the calculation of the whole 10MB of each
sample file. The results show that the zero baseline file has an entropy value of zero and

4.5. EVALUATION OF RESULTS 44

is therefore highly compressible, while the urandom file has a 100% entropy which makes
it unsuitable for compression. Compressing the 10MB zero file using gzip -9 yields a
compressed file size of 49 bytes giving a compression ratio of 1024.10. Compressing the
10MB random file using gzip -9 yields a compressed file size of 10,488,999 bytes giving
a compression ratio of 1.

Table 4.4: Shannon entropy values of sample and baseline files

File Type Shannon Entropy gzip -9 Compression Ratio bzip2 -9 Compression Ratio

zero 0 1,024.10 213,995.10
urandom 7.9999 1.00 1.00
firewall 4.6423 9.87 14.18
proxy 5.5952 4.67 6.78
dns 5.0203 7.40 10.24
pcap-text 4.8580 7.80 8.97
mail 5.4721 7.69 16.19
pcap-binary 6.0081 3.40 3.48
windows-event 5.1906 40.49 73.9

Table 4.4 shows that there is very little correlation between the entropy reported by Shan-
non and the compression ratio achieved by the two command line tools. The pcap-text

and windows-event results highlight this point perfectly. The pcap-text has a Shannon
value of 4.8580 and the windows-event has a Shannon of 5.1906; this would mean that
the pcap-text has a lower entropy and should therefore have a better compression ratio.
The bzip2 compression ratio results show that windows-event (73.9) far exceeds the
compression of pcap-text (8.97).

The Shannon entropy for the sample data does not provide any guidance to a possible
data bias when calculating the compression ratio. Consequently this data is not used in
any further analysis and weighting.

4.5.2 Standard Deviation for Compression Times

Three metrics were determined for each test iteration; compression ratio, compression
time and decompression time. Compression ratio is only dependent on the data and
not influenced by disk or operating system caching as discussed previously in the limita-
tions section. Standard deviations are calculated to evaluate the influence of caching on
compression and decompression times. This is done by reviewing the distribution of the
results based on its standard deviation.

4.5. EVALUATION OF RESULTS 45

Table 4.5 lists the mean compression times in seconds for each compression method for
all block sizes and repeated runs. Table 4.6 shows the distribution of compression times
for the experimental results.

Table 4.5: Mean compression time and standard deviation

Compression Method Mean Time Standard Deviation

bzip2 –1 0.1927 0.0036
bzip2 –9 0.2679 0.0060
gzip –1 0.0752 0.0028
gzip –9 0.0801 0.0028
lz4 –1 0.0734 0.0028
lz4 –9 0.0883 0.0028
lzma –1 0.0898 0.0028
lzma –9 0.2587 0.0032
lzop –1 0.0716 0.0028
lzop –9 0.0967 0.0028
xz –1 0.0908 0.0028
xz –9 0.2599 0.0032
xz -e 0.6462 0.0111

The results summarised in Table 4.5 show that the mean times for faster compression
options (-1) are lower than those of the better compression options (-9 and -e). There
is also clear variance in the compression times based on the actual compression method
used. The values themselves do not show the best method to use, but are later combined
with the compression ratio to do a better evaluation of the compression methods.

Table 4.6: Standard deviation of compression time for all block sizes

Compression Method 1σ 2σ 3σ 4σ+

bzip2 –1 26,860 (63.95%) 14,175 (33.75%) 862 (2.05%) 103 (0.25%)
bzip2 –9 27,013 (64.32%) 13,946 (33.20%) 922 (2.20%) 119 (0.28%)
gzip –1 25,880 (61.62%) 15,343 (36.53%) 769 (1.83%) 8 (0.02%)
gzip –9 27,203 (64.77%) 13,469 (32.07%) 1,200 (2.86%) 128 (0.30%)
lz4 –1 25,921 (61.72%) 15,317 (36.47%) 756 (1.80%) 6 (0.01%)
lz4 –9 26,772 (63.74%) 14,119 (33.62%) 1,046 (2.49%) 63 (0.15%)
lzma –1 26,808 (63.83%) 14,085 (33.54%) 1,017 (2.42%) 90 (0.21%)
lzma –9 30,161 (71.81%) 9,937 (23.66%) 1,505 (3.58%) 397 (0.95%)
lzop –1 25,763 (61.34%) 15,527 (36.97%) 706 (1.68%) 4 (0.01%)
lzop –9 28,001 (66.67%) 12,592 (29.98%) 1,234 (2.94%) 173 (0.41%)
xz –1 26,772 (63.74%) 14,111 (33.60%) 1,032 (2.46%) 85 (0.20%)
xz –9 30,010 (71.45%) 10,052 (23.93%) 1,496 (3.56%) 442 (1.05%)
xz -e 30,424 (72.44%) 9,768 (23.26%) 1,348 (3.21%) 460 (1.10%)

Table 4.6 shows some uneven distribution that indicates a small bias on data caching.

4.5. EVALUATION OF RESULTS 46

Faster options have a greater deviation, which shows that they are more affected by the
disk access than other options. The deviation, however, is still within acceptable limits
for the evaluation of compression times.

4.5.3 Standard Deviation for Decompression Times

In this section we continue with the dissection of the distribution of experimental results
focusing on decompression time. Table 4.7 list the mean decompression times, in seconds
for each compression method, for all block sizes and repeated runs. Table 4.8 shows the
distribution of results of the decompression times. The standard deviation has a very
even distribution showing that no method or option is biased by reading from the disk.

Table 4.7: Mean decompression time and standard deviation

Compression Method Mean Time Standard Deviation

bzip2 –1 0.0836 0.0030
bzip2 –9 0.0888 0.0029
gzip –1 0.0720 0.0029
gzip –9 0.0718 0.0028
lz4 –1 0.0729 0.0028
lz4 –9 0.0730 0.0044
lzma –1 0.0727 0.0028
lzma –9 0.0727 0.0029
lzop –1 0.0715 0.0028
lzop –9 0.0713 0.0028
xz –1 0.0738 0.0028
xz –9 0.0738 0.0028
xz -e 0.0736 0.0028

4.5.4 Compression Performance

Compression ratio is the most important metric when evaluating compression methods,
because the influence of both the compression and decompression times is reduced due
to the processing overhead in reading and writing event data to and from the archive.
Figure 4.1 depicts the total weighted compression ratios. The weighted values are listed
in Table C.1, calculated as described in Section 4.4.6.

The results show that xz -e is the best compression method with 353 points, lzma -9

second with 335 points and xz -9 third with 304 points. From this it is clear that the
lzma/xz family provides the best compression ratio of all the methods under review.

4.5. EVALUATION OF RESULTS 47

Table 4.8: Standard deviation of decompression time for all block sizes

Compression Method 1σ 2σ 3σ 4σ+

bzip2 –1 26,069 (62.07%) 15,074 (35.89%) 834 (1.99%) 23 (0.05%)
bzip2 –9 26,199 (62.38%) 14,924 (35.53%) 847 (2.02%) 30 (0.07%)
gzip –1 25,819 (61.47%) 15,456 (36.80%) 718 (1.71%) 7 (0.02%)
gzip –9 25,812 (61.46%) 15,488 (36.88%) 696 (1.66%) 4 (0.01%)
lz4 –1 25,937 (61.75%) 15,371 (36.60%) 678 (1.61%) 14 (0.03%)
lz4 –9 26,019 (61.95%) 15,286 (36.40%) 687 (1.64%) 8 (0.02%)
lzma –1 25,948 (61.78%) 15,219 (36.24%) 819 (1.95%) 14 (0.03%)
lzma –9 25,958 (61.80%) 15,195 (36.18%) 830 (1.98%) 17 (0.04%)
lzop –1 25,843 (61.53%) 15,450 (36.79%) 699 (1.66%) 8 (0.02%)
lzop –9 25,833 (61.51%) 15,464 (36.82%) 694 (1.65%) 9 (0.02%)
xz –1 25,954 (61.8%) 15,224 (36.25%) 805 (1.92%) 17 (0.04%)
xz –9 25,923 (61.72%) 15,255 (36.32%) 812 (1.93%) 10 (0.02%)
xz -e 25,977 (61.85%) 15,178 (36.14%) 831 (1.98%) 14 (0.03%)

0.00.0

20.0

40.0

60.0

80.0

100.0100.0

120.0

140.0

160.0

180.0

200.0200.0

220.0

240.0

260.0

280.0

300.0300.0

320.0

340.0

Total Weighted Score

W
e
i
g
h
t
e
d

C
o
m
p
r
e
s
s
i
o
n

R
a
t
i
o

bzip2 -1

bzip2 -9

gzip -1

gzip -9

lz4 -1

lz4 -9

lzma -1

lzma -9

lzop -1

lzop -9

xz -1

xz -9

xz -e

Figure 4.1: Total weighted compression ratios

Although the compression ratio achieved by a tool is by far the biggest factor, this research
also considers the compression and decompression times.

4.5. EVALUATION OF RESULTS 48

4.5.5 Compression Time

Figure 4.2 depicts the total weighted compression times per compression method. The
weighted values are listed in Table C.2, calculated as described in Section 4.4.6. It is
interesting to note that the three methods with the worst compression ratios (lzop -1,
lz4 -1, gzip -1) have the fastest compression times. On the other side of the spectrum,
the three methods with the best compression ratios (xz -e, lzma -9, xz -1) have the
worst compression times. The overhead introduced by the event breaking and serialisation
of the event data should hide the bad compression times of the high compression ratio
methods.

0.00.0

20.0

40.0

60.0

80.0

100.0100.0

120.0

140.0

160.0

180.0

200.0200.0

220.0

240.0

260.0

280.0

300.0300.0

320.0

340.0

Total Weighted Score

W
e
i
g
h
t
e
d

C
o
m
p
r
e
s
s
i
o
n

T
i
m
e

bzip2 -1

bzip2 -9

gzip -1

gzip -9

lz4 -1

lz4 -9

lzma -1

lzma -9

lzop -1

lzop -9

xz -1

xz -9

xz -e

Figure 4.2: Total weighted compression times

4.5.6 Decompression Time

Figure 4.3 shows the total weighted decompression times per compression method, with
the weighted values listed in Table C.3, and calculated as described in Section 4.4.6.

4.6. SUMMARY 49

0.00.0

20.0

40.0

60.0

80.0

100.0100.0

120.0

140.0

160.0

180.0

200.0200.0

220.0

240.0

260.0

280.0

300.0300.0

320.0

Total Weighted Score

W
e
i
g
h
t
e
d

D
e
c
o
m
p
r
e
s
s
i
o
n

T
i
m
e

bzip2 -1

bzip2 -9

gzip -1

gzip -9

lz4 -1

lz4 -9

lzma -1

lzma -9

lzop -1

lzop -9

xz -1

xz -9

xz -e

Figure 4.3: Total weighted decompression times

As with the compression times the lzo, lz4 and gzip methods are the fastest. Again,
lzma and xz methods have significantly slower decompression times. This drawback is
also negated by the additional processing in reading and extracting events.

4.6 Summary

This part of the research has provided insights into the different compression methods
when working with smaller data blocks. The next phase of the work uses xz and lzma

methods due to their excellent compression ratios and lz4 and gzip as a baseline in-
sight into the compression and decompression time penalties encountered in the archiving
solution. These methods yielded enough objective data to provide insights into the per-
formance of the pseudo-random access compressed archive, and therefore the bzip2 and
lzo methods was not implemented.

The following chapter reports on the use of the selected compression methods to test the

4.6. SUMMARY 50

compression performance of the archive implementation.

Chapter 5

Implementation Performance Testing

In this chapter the cost in terms of time and compression ratio associated with the archiv-
ing process are evaluated. This provides insight into the disadvantages of the archiving
system. The following sections describe the archive system implementation, experimental
design, execution and results of the experiment as well as the conclusions drawn.

5.1 Archive Implementation

To conduct the performance experiment the archiving system described in Chapter 3
was implemented. The sections below describe the tool chain, several key concepts and
important data structures used in the implementation.

5.1.1 Archive Implementation Tool Chain

The pseudo-random access compressed archive was implemented in C++, using Visual
Studio 2013 on Windows 7 and later ported to Clang version 3.4, first on MacOSX Mav-
erick and then FreeBSD 10. Table 5.1 shows the libraries used in the implementation,
excluding the C++ Standard Library.

Poco C++1 consists of libraries and frameworks that provide the ability to create cross
platform applications with a single source code base. lz42 provides the implementation
of the lz4 compression method, while zlib3 implements the gzip compression method.

1http://pocoproject.org/
2https://code.google.com/p/lz4/
3http://www.zlib.net/

51

5.1. ARCHIVE IMPLEMENTATION 52

Table 5.1: C++ libraries used

Library Version

Poco C++ 1.5.3
lz4 r116
zlib 1.2.8
liblzma 9.22 beta

Finally, lzma4 caters for both the lzma and xz(lzma2) compression methods.

The experiment source code uses the same tool chain and is encoded in the last unit
testing module for the archive implementation test suite. Before running the experiment,
the entire test suite was executed on the platform where the experiment was carried out
to ensure that all the needed functionality of the implementation was working correctly
on the test platform.

5.1.2 Block Array Class

The serialised event data, as detailed in Section 3.5.2, is stored in memory in an array of
memory blocks. The block sizes are determined by configuration options and are one of
the following 64KB, 128KB, 256KB or 512KB.

An array of blocks was used for two reasons. Firstly, it is possible that a single event
can exceed the given block size and could therefore require multiple blocks to store in
memory. Secondly, the last event written in the block could exceed the allocated block
size and additional memory would be required. For example, in a 64KB block where the
current write pointer in a block is 65,305, only 231 bytes are available in the block. If
the last event is 300 bytes the block will overflow and an additional block in memory will
be needed. To prevent the second condition from being triggered with every block, the
archiving system checks the available space left in the block after each write and if the
available space is below 128 bytes, the block is written to disk and a new block is started.

Figure 3.5 shows the block array structures used for storing the events before writing and
after reading the serialised event data from the archive on disk.

4http://7-zip.org/sdk.html

5.1. ARCHIVE IMPLEMENTATION 53

��������	

��������	
	�������
�
���
������	
	�������
�������
�����

��������	
����
���	
�����������
�	��������	
��
� �!��	
�"	#����	
	�������
�
#������	
����!���	
	�������
������	�������	
	�������

Figure 5.1: Event block array structures

5.1.3 Block Array Caching

Optimising batch retrieval from the archive is an essential requirement of the implemen-
tation. Before the process starts the system must sort the entry identifiers; this groups
entry identifiers by data blocks. Once this has been done retrieval can be optimised by
caching data blocks in memory.

The caching mechanism keeps a decompressed copy of the last blocks read from the
archive. This speeds up the retrieval of events in the same block as the data block does
not need to be read from the disk and decompressed again. For this experiment, the cache
is limited to 10% of the total blocks in the archive file.

5.1.4 Compression Method Abstraction

To simplify the coding of the experiment an abstract class is used to provide an interface
for the compression and decompression functionality. Figure 5.2 depicts the abstract
compression method class and all four of the implemented classes, one for each of the
compression methods, i.e., gzip, lz4, lzma and lzma2.

When the archive writer or reader is created an appropriate compression method class is
created to provide the necessary functionality by implementing the pure virtual functions
deflateBlockArray and inflateBlockArray, which perform compression and decom-
pression of an event block array respectively. Both functions take as input an event block
array as described in Section 5.1.2, and also output an event block array.

5.2. EXPERIMENTAL DESIGN AND EXECUTION 54

����������	
������������

����������	
���������������������	
������
�������������������	���	�������������	
���������	��
����������	
���������������������	
������
��������������������	���	�������������	
���������	��

����������	
��������

����������	
���������������������	
������
�������������������	���	�������������	
���������	��
����������	
���������������������	
������
��������������������	���	�������������	
���������	��

����������	
������
�

����������	
���������������������	
������
�������������������	���	�������������	
���������	��
����������	
���������������������	
������
��������������������	���	�������������	
���������	��

����������	
�������

����������	
���������������������	
������
�������������������	���	�������������	
���������	��
����������	
���������������������	
������
��������������������	���	�������������	
���������	��

����������	
������
��

����������	
���������������������	
������
�������������������	���	�������������	
���������	��
����������	
���������������������	
������
��������������������	���	�������������	
���������	��

Figure 5.2: Abstract compression method design

5.2 Experimental Design and Execution

The experiment creates an archive for each log type, using different block sizes, compres-
sion methods and compression levels. The next section (Section 5.2.1) describes the log
samples used, while Section 5.2.3 explains the work flow of the experiment.

5.2.1 Log Samples

For this experiment, we used the same 10MB text log files created for the evaluation of
the compression methods (Chapter 4). The files were modified to remove any truncated
or partial events on the 10MB boundary.

As an example, Listing 5.1 shows the last four events at the very end of the 10MB
firewall sample file. The first three events are complete, but the last entry is incomplete.
Listing 5.2 shows the end of the log file after the incomplete entry has been removed using
a text editor.

5.2. EXPERIMENTAL DESIGN AND EXECUTION 55

1
2 Mar 3 10:37:17 11.123.215.66 10: 32:47.488678 rule 0/0(match): block in on em2:

192.16.0.145.1383 > 148.81.111.111.80: tcp 20 [bad hdr length 8 - too short, <

20]

3 Mar 3 10:37:17 11.123.215.66 10: 32:47.539650 rule 0/0(match): block in on em2:

192.16.1.41.1932 > 192.16.160.192.445: tcp 20 [bad hdr length 8 - too short, <

20]

4 Mar 3 10:37:17 11.123.215.66 10: 32:47.545895 rule 0/0(match): block in on em2:

192.16.1.209.4461 > 11.206.142.159.445: tcp 20 [bad hdr length 8 - too short, <

20]

5 Mar 3 10:37:17 11.123.215.66 10: 32:47.555138 rule 0/0(match): block in on em2:

192.16.1.41.1899 > 192.16.211.190.445: tcp 20 [bad hdr length 8 - t

Listing 5.1: Untruncated PF firewall sample log

1
2 Mar 3 10:37:17 11.123.215.66 10: 32:47.488678 rule 0/0(match): block in on em2:

192.16.0.145.1383 > 148.81.111.111.80: tcp 20 [bad hdr length 8 - too short, <

20]

3 Mar 3 10:37:17 11.123.215.66 10: 32:47.539650 rule 0/0(match): block in on em2:

192.16.1.41.1932 > 192.16.160.192.445: tcp 20 [bad hdr length 8 - too short, <

20]

4 Mar 3 10:37:17 11.123.215.66 10: 32:47.545895 rule 0/0(match): block in on em2:

192.16.1.209.4461 > 11.206.142.159.445: tcp 20 [bad hdr length 8 - too short, <

20]

Listing 5.2: Truncated PF firewall sample log

This truncation reduces the file size below the original 10MB, but as shown in Table 5.2
the reduction is small enough that it does not have a significant impact when evaluating
the results of this experiment, against the baseline created in Chapter 4.

5.2.2 Event Count Calculation

The event count represents the number of unique events in each log file. Each event in
the log file should be in the archive solution after processing. To do the comparison it is
necessary to calculate the number of events in each log file before they are ingested into
the archive.

5.2. EXPERIMENTAL DESIGN AND EXECUTION 56

Table 5.2: Truncated sample log file sizes

Application Original Size (Bytes) Truncated Size(Bytes) Difference

firewall 10,485,760 10,485,611 149 (0.0014%)
windows-event 10,485,760 10,485,548 212 (0.0020%)
dns 10,485,760 10,485,724 36 (0.0003%)
proxy 10,485,760 10,485,087 673 (0.0064%)
mail 10,485,760 10,485,725 35 (0.0003%)
pcap-text 10,485,760 10,485,673 87 (0.0008%)

In the sample logs there are both single-line and multi-line events. For the single-line
event log samples the wc utility is used to count the number of lines that should each be
represented by a single event in the archive.

The wc utility is used to calculate words, lines, characters or bytes in a file. Listing 5.3
shows how the wc utility is used to calculate the number of lines in the firewall sample
log file name event_pflog_small.log.

1 wc -l event_pflog_small.log

Listing 5.3: Example of calculating event count in single-line event log files

The windows-event is the only sample with multi line events. To count the number of
events the grep text search utility is used in conjunction with the wc utility. The pattern
EventCode= only appears once in every event. The grep utility is used to do a line-by-
line search for the pattern which is then output to the console where it is counted by wc.
Listing 5.4 shows how grep and wc utilities are used to calculate the number of lines in
the windows-event sample log file name event_pflog_small.log.

1 grep "EventCode=" event_wineventlog_small.log | wc -l

Listing 5.4: Example of event counting in Windows event logs

5.2.3 Experiment Workflow

A single run in the experiment takes the provided sample file, specified compression
method, compression level and block size and archives the logs into the pseudo-random
access compressed archive. After the sample logs have been processed, the experiment
does a number of read operations. First, it reads each event data block (Section 3.5) into
memory to establish the basic decompression times. Next it reads back each individual

5.3. VALIDATION OF ARCHIVING PROCESS 57

event using both sorted and random list of event entry identifiers as described in Section
5.2.4.

5.2.4 SHA1 Validation of Events

During the archiving process a list is created of records containing the entry identity and
SHA1 hash of the _data field. This list is later used to verify each entry read from the
archive.

After archiving has been completed the experiment reads each event from the archive,
using the random access read method, first based on the list above sorted in sequential
order and then in three random sequences. The read from the sorted list is to obtain
the best speed metrics for the most optimised reading conditions. The three random
reads provide the metrics for adverse reading conditions testing the cost of the random
access functionality. While the sorted read benefits the most from the block array caching
(Section 5.1.3) the random read sequences do not benefit from caching and force far more
reads from the disk.

To create the random list the Mersenne Twister pseudorandom number generator (PRNG)
as proposed by Matsumoto and Nishimura (1998) was used. This algorithm provides a uni-
form random number generator that can reproduce the same sequence of numbers across
platforms given the same initial start value of salt. The C++11 standard implementation
called MT199375 was used.

The three values to initialise the PRNG for each run were generated on www.random.org.
They used atmospheric noise as the source to generate random numbers. The values were
generated with a minimum setting of 1 and maximum setting of 100,000. The resulting
values are 35298, 4479 and 46636.

5.3 Validation of Archiving Process

To evaluate the performance of the archive it is necessary to confirm that the sample log
file was correctly processed and stored in the archive. This was done in two parts: first
comparing the event count in the archive with a manual calculation (Section 5.2.2) of the

5http://www.cplusplus.com/reference/random/mt19937/

5.4. EVALUATION OF RESULTS 58

number of events in each log file, and then in a separate run of the experiment, doing an
event by event comparison of the SHA1 hash of the original event calculated at archive
time with the SHA1 hash of the events read from the archive.

5.3.1 Event Count

The first result that needs to be considered is the event count to ensure that the archiving
system processed the correct number of events when the sample logs were processed.
Table 5.3 shows the number of events contained in the log files. This includes the manual
event count calculation described in Section 5.2.2 as well as the event count reported by
the archiving system after each log file was ingested.

Table 5.3: Event count in sample files

Application
Type

Sample File Name Manual Event
Count

Archive Event
Count

dns event_bind_small.log 101,562 101,562
mail event_maillog_small.log 74,178 74,178
pcap-text event_pcap_text_small.log 76,864 76,864
firewall event_pflog_small.log 76,107 76,107
proxy event_proxy_small.log 47,056 47,056
windows-event event_wineventlog_-

small.log
7,758 7,758

Table 5.3 shows that both the manual calculation and the event count reported agree. It
can therefore be deduced that event breaking was done correctly.

5.3.2 SHA1 Validation

After each sample log was processed, the experimental run validated each event using the
method described in Section 5.2.4. The validation was successful for each iteration of the
experimental run. This means that the event data read from the input were correctly
archived to and retrieved from the implementation.

5.4 Evaluation of Results

The results from this pseudo-random access compressed archive performance testing were
compared with those from the previous chapter (Chapter 4) to determine whether the

5.4. EVALUATION OF RESULTS 59

compression methods show the same result profiles. Next, the performance of the archiver
was evaluated for each of the metrics namely compression ratio, archive time and reading
time. Finally, the cost related to compression ratio and random access for using the
archiving system was determined.

5.4.1 Weighted Compression Ratios

As in the previous experiment in Chapter 4, the compression ratio was calculated for each
run of the experiment by dividing the original log sample uncompressed file size by the
archive file size.

Figure 5.3 shows the weight results of the compression ratio for each compression method
and block size. Again the lzma and lzma2 (xz) families provide the best compression
ratios over all sample log types and block sizes used. The best compression is again
obtained from lzma2 -9 followed by lzma -9.

64KB

128KB

256KB

512KB

lz4 -1

lz4 -9

lzma -1

lzma -9

lzma2 -1

lzma2 -9

zlib -1

zlib -9

Block Sizes

Co
mp

re
ss

io
n

Me
th

od
s

an
d

Le
ve

ls

lz4 -1
lz4 -9
lzma -1
lzma -9
lzma2 -1
lzma2 -9
zlib -1
zlib -9

Figure 5.3: Weighted compression ratio in archive

5.4. EVALUATION OF RESULTS 60

From these results it is clear that the additional metadata introduced by the archiving
process has the same compression profile as shown in the first experiment. Furthermore,
these results are consistent across all of the block sizes.

5.4.2 Average Compression Ratios

The compression ratios provide further insights into the performance of the compression
methods used in the archive. The mean of each compression method was calculated over
each log sample and block size.

Figure 5.4 depicts the mean compression ratios. From this we can see that lzma -9 and
lzma2 -9 yield significantly higher compression ratios than the other options. This also
shows that there is a marked increase in compression ratios obtained with an increase in
block size used.

64KB

128KB

256KB

512KB

lz4 -1

lz4 -9

lzma -1

lzma -9

lzma2 -1

lzma2 -9

zlib -1

zlib -9

Block Sizes

Co
mp

re
ss

io
n

Me
th

od
s

an
d

Le
ve

ls

lz4 -1
lz4 -9
lzma -1
lzma -9
lzma2 -1
lzma2 -9
zlib -1
zlib -9

Figure 5.4: Average compression ratios in archive

Table 5.4 shows how significant the increase in compression yield is on the different block
sizes. For example, the 64KB block for lzma2 -9 has a compression ratio of 6.3311,

5.4. EVALUATION OF RESULTS 61

whereas that for the 512KB block for the same method is 10.5311. This represents an
increase of 66.34%6 over the 64KB block compression ratio. This shows that regardless
of compression method, compression or compression level used, larger event data blocks
have a better compression.

Table 5.4: Mean compression ratios in archive per method per block size

Compression Method 64KB 128KB 256KB 512KB

lz4 –1 3.3595 3.7089 3.9482 4.0915
lz4 –9 4.0952 4.9921 5.6942 6.2275
lzma –1 5.7068 6.7789 7.6546 8.2752
lzma –9 6.3270 7.6694 9.1167 10.5305
lzma2 –1 5.7099 6.7813 7.6568 8.2756
lzma2 –9 6.3311 7.6726 9.1213 10.5311
zlib –1 3.9527 4.1947 4.3291 4.4098
zlib –9 5.1308 5.8290 6.3600 6.7146

5.4.3 Compression Loss

The final part of evaluating the compression ratio results, involved comparing the results
from the archiving system with the results of the command line tools.

From previous results it was determined that xz was the best command line tool and
lzma2 with 512KB blocks was the best performing combination in the archiver. Table 5.5
shows the compression ratio achieved using the xz command line tool to compress the full
length sample log file (Table 5.2), the compression ratio achieved by the archiver, and the
loss in compression ratio.

Table 5.5: Compression ratio loss

Application Type Command Line Ratio Archive Ratio Ratio Loss

dns 10.70 5.67 5.03 (47.04%)
mail 11.48 6.83 4.65 (40.50%)
pcap-text 10.77 6.71 4.06 (37.69%)
firewall 15.65 10.72 4.93 (31.52%)
proxy 9.96 5.85 4.11 (41.27%)
windows-event 96.52 48.47 48.04 (49.78%)

From Table 5.5 it is clear that there is a significant loss in compression ratio using the
6(10.5311 - 6.3311) /6.3311

5.4. EVALUATION OF RESULTS 62

archiver instead of the command line tool. The loss ranges from 31.52% to 49.78% for
the given data sets and compression method.

This loss can be attributed to the fact that the archiver uses smaller blocks which does
not allow the compression methods to build bigger dictionaries. Furthermore the archiver
introduces binary data, for example, the two 64 bit integer timestamps at the start of
each event. As this has a high cardinality, the compression ratio is lower.

5.4.4 Weighted Archive Write Times

Figure 5.5 shows the weighted archiving times for each compression method, compression
level and block size. Again the weighted times for each block agrees with the initial data
collected during the compression method evaluation, with lz4 -1 being the fastest.

64KB

128KB

256KB

512KB

lz4 -1

lz4 -9

lzma -1

lzma -9

lzma2 -1

lzma2 -9

zlib -1

zlib -9

Block Sizes

Co
mp

re
ss

io
n

Me
th

od
s

an
d

Le
ve

ls

lz4 -1
lz4 -9
lzma -1
lzma -9
lzma2 -1
lzma2 -9
zlib -1
zlib -9

Figure 5.5: Weighted times for archiving sample logs

5.4. EVALUATION OF RESULTS 63

5.4.5 Average Archive Write Times

Line breaking, event breaking and timestamp parsing add processing overhead when in-
gesting the sample log data into the archive, which increases the time needed to ingest
the log data into the archive. The average write times reflect the influence of the line
breaking, event breaking, timestamp extraction and serialising event data to disk.

Apart form lzma -9 and lzma2 -9, all the other compression methods and levels are very
close to each other. So the speed advantages of some compression methods like lz4 is
largely negated by the processing overhead introduced. The slow compression speed of
lzma -9 and lzma2 -9, however still exceeds the introduced overhead.

The processing overhead also negates any time gained when using different block sizes.
Only lzma -9 and lzma2 -9 show a marked decrease in compression time as the block
size increases.

64KB

128KB

256KB

512KB

0.00.0

2000000.0

4000000.0

6000000.0

8000000.0

10000000.010000000.0

12000000.0

14000000.0

16000000.0

18000000.0

20000000.020000000.0

22000000.0

24000000.0

26000000.0

28000000.0

30000000.030000000.0

32000000.0

34000000.0

36000000.0

38000000.0

Block Sizes

Ac
hi

vi
ng

 T
im

e
in

 M
ic

ro
 S

ec
on

ds

lz4 -1
lz4 -9
lzma -1
lzma -9
lzma2 -1
lzma2 -9
zlib -1
zlib -9

Figure 5.6: Average times for archiving sample logs

5.4. EVALUATION OF RESULTS 64

5.4.6 Weighted Block Retrieval Times

Figure 5.7 shows the weighted values for the block retrieval times. This again confirms
that lzma and lzma2 are the slowest decompression methods while lz4 -1 is the fastest.
This confirms that the compression profiles are the same for the archive and the command
line tools.

64KB

128KB

256KB

512KB

lz4 -1

lz4 -9

lzma -1

lzma -9

lzma2 -1

lzma2 -9

zlib -1

zlib -9

Block Sizes

Co
mp

re
ss

io
n

Me
th

od
s

an
d

Le
ve

ls

lz4 -1
lz4 -9
lzma -1
lzma -9
lzma2 -1
lzma2 -9
zlib -1
zlib -9

Figure 5.7: Weighted times for reading blocks from archives

5.4.7 Average Block Retrieval Times

The average block retrieval times are shown in Figure 5.8. Again lz4 is the fastest
algorithm by a large margin, with lzma and lzma2 the slowest two compression methods.
This figure shows that, except for lzma and lzma2, there is no significant gain in retrieval
based on the block sizes and even for the exceptions the gain is not very large.

5.4. EVALUATION OF RESULTS 65

64KB

128KB

256KB

512KB

0.00.0

20000.0

40000.0

60000.0

80000.0

100000.0100000.0

120000.0

140000.0

160000.0

180000.0

200000.0200000.0

220000.0

240000.0

260000.0

280000.0

300000.0300000.0

320000.0

340000.0

360000.0

Block Sizes

Re
tr

ie
va

l
Ti

me
 i

n
Mi

cr
o

Se
co

nd
s

lz4 -1
lz4 -9
lzma -1
lzma -9
lzma2 -1
lzma2 -9
zlib -1
zlib -9

Figure 5.8: Average block retrieval times

5.4.8 Random Access Read Times

Random access is one of the major objectives of the implementation. Reading times
for events, therefore, are measured for both sorted and randomly ordered entry identi-
fiers. The sorted times were averaged over all the log sample files while the randomly
ordered times were averaged over three random retrieval times and then the calculation
was averaged by the number of log sample types.

Figure 5.9 depicts the average read times of single events in a sequential order, thus
limiting the number of compressed data blocks read from disk and decompressed in mem-
ory. The chart shows a small variance in performance between the compression methods,
with lz4 and zlib showing the best performance. The detailed times can be found in
Table D.1, which shows that there is no substantial change in read times for each compres-
sion method for different event data block sizes. For example lzma2 -1 takes 1.83, 1.81,
1.80 and 1.80 seconds for 64KB, 128KB, 256KB and 512KB event block sizes, respectively.

Figure 5.10 shows the average read times for single events in random order; the random

5.4. EVALUATION OF RESULTS 66

64KB

128KB

256KB

512KB

0.00.0

0.1

0.2

0.3

0.4

0.50.5

0.6

0.7

0.8

0.9

1.01.0

1.1

1.2

1.3

1.4

1.51.5

1.6

1.7

1.8

Block Sizes

So
rt

ed
 R

ea
d

Ti
me

 i
n

Se
co

nd
s

lz4 -1
lz4 -9
lzma -1
lzma -9
lzma2 -1
lzma2 -9
zlib -1
zlib -9

Figure 5.9: Average retrieval time based on sorted entry identifiers

nature of the access forces an almost continuous reload of event data blocks from the
storage and decompression thereof each time. The chart shows a significant increase in
the time needed to retrieve all the events. For lzma2 -9 using a 512KB block, according
to Table D.2, the read times for sorted and random access increase from 1.79 seconds
to 714.74 seconds, respectively. This is due to the significant increase in the number
of event data blocks read. Take, for example, the mail log sample using 512KB blocks
(Table 5.6); the sorted access is 25 page reads while the three random accesses required
59,260, 59,273 and 59,302, respectively.

Figure 5.10 also shows that performance loss is further increased as the block sizes in-
creases. For lzma2 -9 the average read times are 126.31, 229.57, 416.68 and 714.74

seconds for 64KB, 128KB, 256KB and 512KB event block sizes respectively. The random na-
ture of the retrieval negates any possible benefit of the event data block caching (Section
5.1.3) used.

67

Table 5.6: Number of event data block reads from archive

Compression
Method

Block
Size

Event
Count

Sorted Random
1

Random
2

Random
3

dns 64KB 101,562 213 99,136 99,105 99,146
dns 128KB 101,562 107 96,818 96,722 96,805
dns 256KB 101,562 54 92,099 91,893 91,883
dns 512KB 1015,62 27 82,639 82,430 82,427
firewall 64KB 76,107 201 74,188 74,181 74,222
firewall 128KB 76,107 101 72,307 72,192 72,230
firewall 256KB 76,107 51 68,413 68,356 68,415
firewall 512KB 76,107 26 60,766 60,727 60,776
mail 64KB 74,178 199 72,265 72,343 72,379
mail 128KB 74,178 100 70,401 70,489 70,360
mail 262144 74,178 50 66,612 66,716 66,692
mail 512KB 74,178 25 59,260 59,273 59,302
pcap-text 64KB 76,864 201 74,925 74,942 74,856
pcap-text 128KB 76,864 101 73,044 73,026 72,928
pcap-text 256KB 76,864 51 69,216 69,252 69,095
pcap-text 512KB 76,864 26 61,709 61,664 61,413
proxy 64KB 47,056 185 45,744 45,777 45,801
proxy 128KB 47,056 93 44,415 44,495 44,568
proxy 256KB 47,056 47 41,862 41,969 42,012
proxy 512KB 47,056 24 36,803 36,848 36,974
winevent 64KB 7,758 163 7,525 7,519 7,509
winevent 128KB 7,758 82 7,271 7,287 7,272
winevent 256KB 7,758 41 6,806 6,830 6,770
winevent 512KB 7,758 21 5,906 5,880 5,888

5.5. SUMMARY 68

64KB

128KB

256KB

512KB

0.00.0

100.0

200.0

300.0

400.0

500.0500.0

600.0

700.0

Block Sizes

Av
er

ag
e

Ra
nd

om
 R

ea
d

Ti
me

 i
n

Se
co

nd
s

lz4 -1
lz4 -9
lzma -1
lzma -9
lzma2 -1
lzma2 -9
zlib -1
zlib -9

Figure 5.10: Average retrieval time based on randomly ordered entry identifiers

5.5 Summary

Corresponding with the results achieved in the previous chapter, lzma2 -9(xz) and lzma

-9 provide the best compression ratio. There is however a significant loss in compression
ratio of between 31.52% and 49.78% depending on the log sample type. Compression
ratio also improves with the use of larger event data block sizes.

Again lz4 -1 provides the fastest read and write times. This holds true for accessing
events in both a sequential and random manner. Random access also introduces significant
increase in retrieval times as the event data block size used increases.

Chapter 6

Conclusion and Future Work

This chapter provides our conclusions based on the results obtained in the previous two
chapters. Lastly, possible future work is discussed.

6.1 Contribution of this Work

The research objectives of this work were: to present a random access compressed archive
for storing heterogeneous text security log data and to evaluate the impact of different
compression methods and block sizes.

The research has shown that a pseudo-random access compressed archive can provide
random access to event-broken security log entries with an entry identifier created at
archival time. There is, however, a significant decrease in the compression ratio, and
increase in compression and decompression times. This cost is offset by the ability to be
able to randomly access individual entries thereby making it suitable for indexing in IR
systems and other indexing implementations.

It was further shown that when performing batch retrieval from the archive, the event
identifiers should be sorted so that the event data blocks are sequentially accessed. This
should alleviate the very high retrieval time associated with pure random access to the
archive.

Based on the experimental results, the compression method selected for this archive de-
pends on the specific use case. In cases where compression is of the utmost importance,

69

6.2. FUTURE WORK 70

lzma -9 with 512KB event data blocks should be used. In cases where random access
dominates without the ability to sort the entry identifiers before retrieval, lz4 -9 with
64KB event data blocks is the best choice. When a middle ground is required, zlib -9

with a 64KB block offers the best solution. The 64KB event data block is used with
zlib -9 as it offers the best random retrieval time and there is no significant increase in
compression ratio with bigger blocks that can offset the random retrieval time benefit.

This work provides a strong foundation for storing log event data in such a way that it
can be used for full text indexing and analytics.

6.2 Future Work

Our research highlighted some concepts that could benefit from further research.

Implementation of an inverted index using the proposed archiving system will provide
insight into the performance of the archive as the basis of a IR system, especially in a
distributed environment where the archives can be used as shards (Roy, 2008), both on a
single server as well as on individual nodes in a cluster.

While serialising the events to the archive (see Section 3.5.2) a number of binary elements
are introduced to the log data that have a detrimental effect on the achievable compression
ratio. Future researchers can expand on this work by separating these binary elements and
text data within an event data block (see Section 3.5). The separation will add processing
overhead when reading data from the archive, but the gain in compression ratio should
offset the processing cost.

The archive evaluates several compression methods to compress whole blocks. An alterna-
tive would be to compress the text part of individual entries only using an algorithm like
the Burrows-Wheeler Transformation (Burrows and Wheeler, 1994) with some variant of
Huffman Coding (Huffman, 1952), as discussed in Sections 2.3.3 and 2.3.1. The results
from this could provide better insight into the cost of compressing individual entries as
opposed to big data blocks containing both binary and text data.

References

Berners-Lee, T. RFC 2396: Uniform Resource Identifiers (URI). 1998. Online.
Retrieved from http://www.rfc-archive.org/getrfc.php?rfc=2396

Retrieved on 20 November 2014.

Blanc, B. and Maaraoui, B. Endianness or where is byte 0. 2005. Online.
Retrieved from http://3bc.bertrand-blanc.com/endianness05.pdf

Retrieved on 8 August 2014.

Burrows, M. and Wheeler, D. J. A block-sorting lossless data compression algorithm.
Technical report, Systems Research Center of Digital Equipment Corporation, 1994.
doi:10.1.1.141.5254.

Büttcher, S., Clarke, C. L. A., and Cormack, G. V. Information Retrieval: Im-
plementing and Evaluating Search Engines. MIT Press, 2010. ISBN 978-0-262-02651-2.

Deutsch, L. P. GZIP file format specification version 4.3. 1996. Online.
Retrieved from http://tools.ietf.org/html/rfc1952

Retrieved on 2 November 2014.

Donovan, J. Wireless Data Volume on Our Network Continues to Double Annually.
February 2012. Online.
Retrieved from http://www.attinnovationspace.com/innovation/story/a7781181

Retrieved on 26 November 2014.

Faith, R. dictzip. June 1997. Online.
Retrieved from http://www.linuxcommand.org/man_pages/dictzip1.html

Retrieved on 13 September 2013.

Fenwick, P. M. The Burrows–Wheeler Transform for Block Sorting Text Compression:
Principles and Improvements. The Computer Journal, 39(9):731–740, 1996. doi:10.
1093/comjnl/39.9.731.

71

http://www.rfc-archive.org/getrfc.php?rfc=2396
http://3bc.bertrand-blanc.com/endianness05.pdf
http://tools.ietf.org/html/rfc1952
http://www.attinnovationspace.com/innovation/story/a7781181
http://www.linuxcommand.org/man_pages/dictzip1.html

REFERENCES 72

Frakes, W. B. and Baeza-Yates, R. Information Retrieval - Data Structures &
Algorithms. Prentice Hall, 1992.

Gantz, J. and Reinsel, D. The digital universe decade-are you ready. Technical report,
EMC Corporation, 2010.

Gantz, J. and Reinsel, D. The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east. Technical report, EMC Corporation, 2012.

Huffman, D. A. A method for the construction of minimum redundancy codes. Proceed-
ings of the IRE, 40(9):1098–1101, 1952. doi:10.1109/JRPROC.1952.273898.

ISO. ISO 8601:2004 Data elements and interchange formats. Information interchange.
Representation of dates and times. International Organization for Standardization,
2005.

Kiselkov, S. LZ4 Compression. January 2013. Online.
Retrieved from http://wiki.illumos.org/display/illumos/LZ4+Compression

Retrieved on 3 September 2014.

Klyne, G. and Newman, C. RFC 3339: Date and Time on the Internet: Timestamps.
2002. Online.
Retrieved from http://www.ietf.org/rfc/rfc3339.txt

Retrieved on 19 May 2014.

Matsumoto, M. and Nishimura, T. Mersenne Twister: A 623-dimensionally Equidis-
tributed Uniform Pseudo-random Number Generator. ACM Trans. Model. Comput.
Simul., 8(1):3–30, January 1998. doi:10.1145/272991.272995.

Moffat, A. and Zobel, J. Self-indexing inverted files for fast text retrieval. ACM Trans.
Inf. Syst., 14(4):349–379, 1996. doi:10.1145/237496.237497.

Navarro, G. and Makinen, V. Compressed full-text indexes. ACM Computing Surveys
(CSUR), 39(1), 2007. doi:10.1145/1216370.1216372.

Press, G. A Very Short History Of Big Data. May 2014. Online.
Retrieved from http://www.forbes.com/sites/gilpress/2013/05/09/

a-very-short-history-of-big-data/2/

Retrieved on 26 November 2014.

Roy, R. Shard – A Database Design. July 2008. Online.
Retrieved from http://technoroy.blogspot.com/2008/07/

http://wiki.illumos.org/display/illumos/LZ4+Compression
http://www.ietf.org/rfc/rfc3339.txt
http://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/2/
http://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/2/
http://technoroy.blogspot.com/2008/07/shard-database-design.html
http://technoroy.blogspot.com/2008/07/shard-database-design.html
http://technoroy.blogspot.com/2008/07/shard-database-design.html

REFERENCES 73

shard-database-design.html

Retrieved on 8 January 2015.

Shafranovich, Y. Common Format and MIME Type for Comma-Separated Values
(CSV) Files. Technical report, Internet Engineering Task Force, October 2005.

Shannon, C. E. A Mathematical Theory of Communication. SIGMOBILE Mob. Com-
put. Commun. Rev., 5(1):3–55, 2001. doi:10.1145/584091.584093.

Workgroup, D. Dwarf Debugging Information Format Version 3. 2005. Online.
Retrieved from http://dwarfstd.org/doc/Dwarf3.pdf

Retrieved on 9 August 2014.

York, K. A Random Access Compressed File Layer. July 2001. Online.
Retrieved from http://www.drdobbs.com/article/print?articleId=

184401415&siteSectionName=

Retrieved on 12 September 2013.

Ziv, J. and Lempel, A. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23(3):337–343, May 1977. doi:10.1109/TIT.1977.
1055714.

Zobel, J. and Moffat, A. Inverted files for text search engines. ACM Computing
Surveys (CSUR), 38(2), 2006. doi:10.1145/1132956.1132959.

http://technoroy.blogspot.com/2008/07/shard-database-design.html
http://technoroy.blogspot.com/2008/07/shard-database-design.html
http://technoroy.blogspot.com/2008/07/shard-database-design.html
http://dwarfstd.org/doc/Dwarf3.pdf
http://www.drdobbs.com/article/print?articleId=184401415&siteSectionName=
http://www.drdobbs.com/article/print?articleId=184401415&siteSectionName=

Appendix A

Test Platform

The hardware used for all the experiments in this work is listed below. This is followed
by the bonny++ statistics of the hard drive that provides the base line for the hard drive
performance.

The server is a HP Proliant MicroServer with the following specifications:

• AMD Turion II Neo N54L (2.2GHz, 15W, 2MB, 2 Core)

• (2 x 2GB) PC3–10600E (UDIMMs)

• 1 x 250GB 7200RPM HDD

• Embedded AMD SATA controller (with RAID 0, 1 4 Internal HDD Support)

• AMD SATA controller (RAID 0, 1)

• NC107i Gigabit Adapter

• 150W Power Supply

• 4 x LFF NHP SATA Ultra Micro Tower.

Self-Monitoring, Analysis and Reporting Technology1 tool in FreeBSD shows the following
information for the hard disk:

1www.smartmontools.org

74

75

/usr/local/sbin/smartctl -i /dev/ada0

smartctl 6.3 2014-07-26 r3976 [FreeBSD 10.0-RELEASE-p3 amd64] (local build)

Copyright (C) 2002-14, Bruce Allen, Christian Franke, www.smartmontools.org

=== START OF INFORMATION SECTION ===

Model Family: HP 250GB SATA disk VB0250EAVER

Device Model: VB0250EAVER

LU WWN Device Id: 5 000c50 05081fc40

Firmware Version: HPG9

User Capacity: 250,059,350,016 bytes [250 GB]

Sector Size: 512 bytes logical/physical

Rotation Rate: 7200 rpm

Form Factor: 3.5 inches

Device is: In smartctl database [for details use: -P show]

ATA Version is: ATA8-ACS T13/1699-D revision 6

SATA Version is: SATA 2.6, 3.0 Gb/s (current: 3.0 Gb/s)

Local Time is: Tue Nov 25 08:37:24 2014 SAST

SMART support is: Available - device has SMART capability.

SMART support is: Enabled

The benchmarking tool bonnie++ v1.972 is used to obtain statistics for the hard disk.
Listing A.1 shows the command executed. Figure A.1 contains the statistics obtained for
the hard disk.

1 bonnie++ -s 8g -u root -n 50 -d /tmp/bonnie

Listing A.1: bonnie++ command

2http://www.googlux.com/bonnie.html

76

V
e
r
s
io

n
 1

.9
7

S
e
q

u
e
n

ti
a

l
O

u
tp

u
t

S
e
q

u
e
n

ti
a

l

I
n

p
u

t
R

a
n

d
o

m

S
e
e
k

s

S
e
q

u
e
n

ti
a

l
C

r
e
a

te
R

a
n

d
o

m
 C

r
e
a

te

Si
ze

Pe
r

Ch
ar

Bl
oc

k
Re

w
rit

e
Pe

r
Ch

ar
Bl

oc
k

N
um

Fi
le

s
Cr

ea
te

Re
ad

D
el

et
e

Cr
ea

te
Re

ad
D

el
et

e

K
/se

c
% CP

U
K

/se
c

% CP
U

K
/se

c
% CP

U
K

/se
c

% CP
U

K
/se

c
% CP

U
/se

c
%

 C
PU

/se
c

% CP
U

/se
c

% CP
U

/se
c

% C
PU

/se
c

% C
PU

/se
c

% CP
U

/se
c

% C
PU

za
ph

od
8G

45
5

99
91

81
1

14
39

03
6

7
84

5
99

94
92

2
13

17
1.

0
4

50
18

40
5

37
++

++
+

++
+

80
44

5
99

30
18

0
63

++
++

+
++

+
79

82
8

96
La

te
nc

y
18

58
6u

s
15

5m
s

15
66

m
s

36
62

8u
s

63
07

7u
s

28
59

m
s

La
te

nc
y

27
2m

s
42

85
9u

s
15

36
us

85
79

3u
s

59
52

0u
s

14
15

7u
s

Figure A.1: bonnie++ results

Appendix B

Log File Samples

The appendix contains extracts from the sample logs used in Chapters 4 and 5.

B.1 PF Firewalls: firewall

1 Mar 3 10:24:55 11.123.215.66 10: 20:24.715440 rule 0/0(match): block in on em1:

11.130.45.170.3813 > 86.107.252.66.7799: UDP, length 32

2 Mar 3 10:24:55 11.123.215.66 10: 20:24.718632 rule 0/0(match): block in on em2:

192.16.0.207.2291 > 11.171.147.232.445: tcp 12 [bad hdr length 16 - too short,

< 20]

3 Mar 3 10:24:55 11.123.215.66 10: 20:24.737414 rule 0/0(match): block in on em1:

11.201.194.84.1496 > 188.240.68.129.6432: UDP, length 46

4 Mar 3 10:24:55 11.123.215.66 10: 20:24.739743 rule 0/0(match): block in on em2:

192.16.1.41.4661 > 192.16.191.146.445: tcp 12 [bad hdr length 16 - too short, <

20]

5 Mar 3 10:24:55 11.123.215.66 10: 20:24.749981 rule 0/0(match): block in on em2:

192.16.0.207.2292 > 11.171.29.200.445: tcp 12 [bad hdr length 16 - too short, <

20]

6 Mar 3 10:24:55 11.123.215.66 10: 20:24.754977 rule 0/0(match): block in on em2:

192.16.1.41.4628 > 192.16.40.153.445: tcp 12 [bad hdr length 16 - too short, <

20]

Listing B.1: Extract from PF Firewall logs

77

B.2. WINDOWS SECURITY EVENT LOGS: WINDOWS-EVENT 78

B.2 Windows Security Event Logs: windows-event

1 04/16/2014 02:57:29 PM

2 LogName=Security

3 SourceName=Microsoft Windows security auditing.

4 EventCode=4634

5 EventType=0

6 Type=Information

7 ComputerName=exp-srv-sql12.dummy.com

8 TaskCategory=Logoff

9 OpCode=Info

10 RecordNumber=21372209

11 Keywords=Audit Success

12 Message=An account was logged off.

13
14 Subject:

15 Security ID: dummy\spadmin

16 Account Name: spadmin

17 Account Domain: dummy

18 Logon ID: 0x3EF89597

19
20 Logon Type: 3

21
22 This event is generated when a logon session is destroyed. It may be positively

correlated with a logon event using the Logon ID value. Logon IDs are only

unique between reboots on the same computer.

23
24 04/16/2014 02:57:29 PM

25 LogName=Security

26 SourceName=Microsoft Windows security auditing.

27 EventCode=4672

28 EventType=0

29 Type=Information

30 ComputerName=exp-srv-sql12.dummy.com

31 TaskCategory=Special Logon

32 OpCode=Info

33 RecordNumber=21372208

34 Keywords=Audit Success

35 Message=Special privileges assigned to new logon.

B.3. BIND: DNS 79

36
37 Subject:

38 Security ID: NT AUTHORITY\SYSTEM

39 Account Name: SYSTEM

40 Account Domain: NT AUTHORITY

41 Logon ID: 0x3E7

42
43 Privileges: SeAssignPrimaryTokenPrivilege

44 SeTcbPrivilege

45 SeSecurityPrivilege

46 SeTakeOwnershipPrivilege

47 SeLoadDriverPrivilege

48 SeBackupPrivilege

49 SeRestorePrivilege

50 SeDebugPrivilege

51 SeAuditPrivilege

52 SeSystemEnvironmentPrivilege

53 SeImpersonatePrivilege

Listing B.2: Extract from Windows Security Event logs

B.3 BIND: dns

1 16-May-2012 09:47:38.099 queries: info: client 93.186.18.197#22608: query: ns1.

async.org.za IN A -

2 16-May-2012 09:47:38.478 queries: info: client 208.69.34.10#42480: query: ns1.

async.org.za IN A -

3 16-May-2012 09:47:38.753 queries: info: client 216.32.180.10#49518: query:

dsgschool.com IN MX -

4 16-May-2012 09:47:39.037 queries: info: client 208.69.34.10#41436: query:

phantom.moria.org IN A -

5 16-May-2012 09:47:39.233 queries: info: client 154.32.107.18#36428: query: ns1.

async.org.za IN AAAA -

6 16-May-2012 09:47:39.895 queries: info: client 218.248.255.197#37554: query:

gauntlet.mithral.co.za IN AAAA -E

Listing B.3: Extract from BIND logs

B.4. SQUID PROXY LOGS: PROXY 80

B.4 Squid Proxy Logs: proxy

1 1380042813.978 29679 196.23.167.67 TCP_MISS/200 4629 CONNECT sites.google.com

:443 - DIRECT/155.232.240.59 -

2 1380042813.978 27726 196.23.167.67 TCP_MISS/200 4629 CONNECT ssl.gstatic.com:443

- DIRECT/74.125.233.47 -

3 1380042813.978 27726 196.23.167.67 TCP_MISS/200 4629 CONNECT ssl.gstatic.com:443

- DIRECT/74.125.233.47 -

4 1380042813.978 86265 196.23.167.67 TCP_MISS/200 3325 CONNECT fbcdn-profile-a.

akamaihd.net:443 - DIRECT/197.80.130.17 -

5 1380042813.978 86575 196.23.167.67 TCP_MISS/200 235430 CONNECT fbstatic-a.

akamaihd.net:443 - DIRECT/197.80.130.25 -

6 1380042813.978 85246 196.23.167.67 TCP_MISS/200 3136026 CONNECT fbcdn-video-a.

akamaihd.net:443 - DIRECT/165.165.46.25 -

7 1380042813.978 76970 196.23.167.67 TCP_MISS/200 3181 CONNECT fbcdn-profile-a.

akamaihd.net:443 - DIRECT/197.80.130.27 -

8 1380042813.978 110368 196.23.167.67 TCP_MISS/200 46916 CONNECT www.facebook.com

:443 - DIRECT/66.220.152.19 -

Listing B.4: Extract from Squid Proxy logs

B.5 Postfix Mail Logs: mail

1 Feb 23 00:00:06 dryder postfix/qmgr[61060]: 0CFE717B86C: removed

2 Feb 23 00:00:12 dryder postfix/smtpd[84554]: connect from unknown

[190.239.81.198]

3 Feb 23 00:00:13 dryder postfix/smtpd[84554]: NOQUEUE: reject: RCPT from unknown

[190.239.81.198]: 450 4.1.8 <veuw@hxhg.net>: Sender address rejected: Domain not

found; from=<veuw@hxhg.net> to=<unknown@sacschool.com> proto=SMTP helo=<XIOMI-

PC>

4 Feb 23 00:00:14 dryder postfix/smtpd[84554]: lost connection after RCPT from

unknown[190.239.81.198]

5 Feb 23 00:00:14 dryder postfix/smtpd[84554]: disconnect from unknown

[190.239.81.198]

6 Feb 23 00:00:30 dryder postfix/smtpd[84688]: lost connection after QUIT from

static.85-10-211-71.clients.your-server.de[85.10.211.71]

Listing B.5: Extract from Postfix mail logs

B.6. PCAP FILES: PCAP-TEXT 81

B.6 PCAP Files: pcap-text

1 10:46:22.607165 IP 196.21.0.65 > 196.21.42.85: ICMP echo request, id 256, seq

6702, length 44

2 10:46:23.394343 IP 114.37.199.14.1276 > 196.21.42.117.445: Flags [S], seq

511233496, win 65535, options [mss 1440,nop,nop,sackOK], length 0

3 10:46:23.633206 IP 196.21.0.65 > 196.21.42.86: ICMP echo request, id 256, seq

6958, length 44

4 10:46:24.603639 IP 196.21.0.65 > 196.21.42.87: ICMP echo request, id 256, seq

7214, length 44

5 10:46:25.603922 IP 196.21.0.65 > 196.21.42.88: ICMP echo request, id 256, seq

7470, length 44

6 10:46:26.389151 IP 114.37.199.14.1276 > 196.21.42.117.445: Flags [S], seq

511233496, win 65535, options [mss 1440,nop,nop,sackOK], length 0

7 10:46:26.603507 IP 196.21.0.65 > 196.21.42.89: ICMP echo request, id 256, seq

7726, length 44

Listing B.6: Extract from PCAP file

Appendix C

Additional Information for the
Compression Method Evaluation

Table C.1: Compression ratio weighted values

Compression Method Weighted Total

bzip2 –1 195
bzip2 –9 259
gzip –1 106
gzip –9 187
lz4 –1 56
lz4 –9 111
lzma –1 258
lzma –9 335
lzop –1 32
lzop –9 126
xz –1 226
xz –9 304
xz -e 353
Total 2548

82

83

Table C.2: Compression time weighted values

Compression Method Weighted Total

bzip2 –1 153
bzip2 –9 123
gzip –1 309
gzip –9 251
lz4 –1 344
lz4 –9 235
lzma –1 242
lzma –9 56
lzop –1 355
lzop –9 155
xz –1 211
xz –9 58
xz -e 56
Total 2548

Table C.3: Decompression time weighted values

Compression Method Weighted Total

bzip2 –1 54
bzip2 –9 30
gzip –1 245
gzip –9 284
lz4 –1 287
lz4 –9 318
lzma –1 185
lzma –9 183
lzop –1 306
lzop –9 320
xz –1 104
xz –9 107
xz -e 125
Total 2548

Appendix D

Random Access Retrieval Times

Table D.1: Average retrieval time based on sorted entry identifiers in seconds

Compression Method 64KB 128KB 256KB 512KB

lz4 –1 1.51 1.51 1.52 1.53
lz4 –9 1.51 1.52 1.51 1.52
lzma –1 1.83 1.81 1.81 1.80
lzma –9 1.84 1.86 1.81 1.78
lzma2 –1 1.83 1.81 1.80 1.80
lzma2 –9 1.84 1.83 1.81 1.78
zlib –1 1.61 1.62 1.62 1.62
zlib –9 1.60 1.60 1.60 1.60

Table D.2: Average retrieval time based on randomly ordered entry identifiers in seconds

Compression Method 64KB 128KB 256KB 512KB

lz4 –1 17.57 32.32 60.64 110.62
lz4 –9 14.90 26.88 49.75 90.23
lzma –1 122.94 227.53 421.19 736.82
lzma –9 125.88 228.95 415.63 713.54
lzma2 –1 123.55 228.10 421.62 737.82
lzma2 –9 126.31 229.57 416.68 714.74
zlib –1 50.44 94.73 176.55 314.75
zlib –9 46.16 85.90 160.07 284.89

84

	List of Figures
	List of Tables
	Listings
	Introduction
	Background Information
	Problem Statement
	Research Objectives
	Delineation and Limitations
	Log Sources and Compression Ratios
	Compression Methods

	Document Structure

	Literature Review
	Inverted Index
	Random Access in Compressed Files
	Compression
	Huffman Coding
	LZ77
	Burrows-Wheeler Transformation

	Compressed Full-Text Indexes
	Summary

	Process Flow and Pseudo-Random Access Compressed Archive
	Timestamp Extraction
	Timestamp Prefix
	Timestamp Parsing
	Missing Century
	Missing Year
	Missing Timezone

	Event Breaking
	Event Structure
	Generic Fields
	Line Breaking
	Merging Lines
	Metadata
	Event Breaking Process Flow

	Event Archiver
	Variable Width Integers
	Fixed Width Integers
	Strings

	Archive Header
	Event Data Blocks
	Event Data Block Header
	Serialised Event Data
	Event Identifier
	Event Data Block Offset Record

	Block Offset List
	Metadata
	Tailing Record
	Summary

	Evaluation of Compression Methods
	Experimental Design and Execution
	Compression Tools
	Limitations
	Data Bias
	Disk Access Caching
	Tool Implementation

	Implementation
	Sample Log Files
	Shannon Entropy
	Executing Command Line Tools
	Compression Ratios
	Mean
	Weighting
	Standard Deviation Calculation

	Evaluation of Results
	Shannon Entropy Results
	Standard Deviation for Compression Times
	Standard Deviation for Decompression Times
	Compression Performance
	Compression Time
	Decompression Time

	Summary

	Implementation Performance Testing
	Archive Implementation
	Archive Implementation Tool Chain
	Block Array Class
	Block Array Caching
	Compression Method Abstraction

	Experimental Design and Execution
	Log Samples
	Event Count Calculation
	Experiment Workflow
	SHA1 Validation of Events

	Validation of Archiving Process
	Event Count
	SHA1 Validation

	Evaluation of Results
	Weighted Compression Ratios
	Average Compression Ratios
	Compression Loss
	Weighted Archive Write Times
	Average Archive Write Times
	Weighted Block Retrieval Times
	Average Block Retrieval Times
	Random Access Read Times

	Summary

	Conclusion and Future Work
	Contribution of this Work
	Future Work

	References
	Test Platform
	Log File Samples
	PF Firewalls: firewall
	Windows Security Event Logs: windows-event
	BIND: dns
	Squid Proxy Logs: proxy
	Postfix Mail Logs: mail
	PCAP Files: pcap-text

	Additional Information for the Compression Method Evaluation
	Random Access Retrieval Times

